2.13B Exponential and Logarithmic Equations and Inequalities

Solve the following inequalities.
Ex 1: $\log (x-8)+\log 2 \leq \log (3 x+4)$
First... what restrictions are there with the arguments of these logs?

So.....
Now solve and compare the intersections!

Try this one!
Ex 2: $\log _{2}(2 x+6)>3$
*When changing from
logarithmic to exponential the argument stays on the side it started!
*What would happen if this was less than instead?

Do exponentials have restrictions on their domains?
Solve this one!
Ex 3: $3^{x+2}-4>23$

Find the inverse of each function.
Ex 4: $f(x)=3\left(2^{x+1}\right)-4$
Ex 5: $g(x)=\ln (2 x+3)+10$

2.13B Exponential and Logarithmic Equations and Inequalities

CALCULATOR ACTIVE. Solve each inequality.

1. $\log _{4} x<3$
2. $2^{x+3}+5>37$
3. $\log 5+\log (x-2) \geq \log (3 x+8)$
4. $\log _{2}(x+5)-8>-3$
5. $4\left(3^{2 x}\right)-8 \leq 316$
6. $\ln (x+4)<\ln (x-6)+\ln 3$
7. $g(x)=\ln (x-4)+8 \quad$ 8. $f(x)=3\left(2^{x}\right)+6$
8. $h(x)=3 \log _{2}(2 x+1)-3$
9. $j(x)=2 e^{x+8}-5$
10. Use the formula for continuously compounded to solve. $A=P e^{r t}$, where A is how much money we currently have, P is the principal (how much we started with), r is the interest rate and t, is the amount of time in years.

If Mr. Brust currently has $\$ 250,000$ in his retirement account that earns him 8.5% annual interest, how long will it take for the account to have at least $\$ 1,000,000$ if he does not add any more money into the account?
12. When considering the equation $\log (x-3)+\log (5)>\log (x+9)$, which of the following domains is our initial restriction.
(A) $(3, \infty)$
(B) $(5, \infty)$
(C) $(-9, \infty)$
(D) $(6, \infty)$
13. When considering the equation $\log (x-3)+\log (5)>\log (x+9)$, which of the following represents the domain of all solutions to the inequality?
(A) $(3, \infty)$
(B) $(5, \infty)$
(C) $(-9, \infty)$
(D) $(6, \infty)$
14. Express y as a function of $x . A, B$ and C are constant, positive numbers.

$$
\log (y-A)=B x-\log C
$$

(A) $y=\frac{10^{B x}}{C}+A$
(B) $y=C+A\left(10^{B x}\right)$
(C) $y=\frac{C}{A}-10^{B x}$
(D) $y=\frac{B x^{10}}{C}+A$

