A function has the following coordinate points. Could the function represent a linear function, exponential function, or neither?

1. $(-2,5),(-1,8),(0,11)$	2. $(8,10),(9,12),(10,8)$	$3 .(2,12),(3,6),(4,3)$

The following functions are either linear or exponential. Which is it? Justify your answer.
4.

\boldsymbol{x}	-3	2	7
$\boldsymbol{f}(\boldsymbol{x})$	1	3	9

5.

\boldsymbol{x}	2	6	10
$\boldsymbol{f}(\boldsymbol{x})$	12	9	6

Is each function linear or exponential. Identify the constant (slope or ratio) that causes the output values to change?
6. $y=-4 \cdot\left(\frac{1}{3}\right)^{x}$
7. $y=6+2 x$
8. $y=8 \cdot 3^{x+6}$
9. $y+1=6\left(x-\frac{2}{3}\right)$

It is known that $\boldsymbol{f}(\boldsymbol{x})$ is a linear function and that it passes through the given points. Write an equation for this function.
10. $(8,12)$ and $(10,6)$
11. $(3,5)$ and $(8,40)$

It is known that $f(x)$ is an exponential function and that it passes through the given points. Write an equation for this function.
12. $(8,12)$ and $(10,6)$
13. $(3,5)$ and $(8,40)$

Answers to 2.2 CA \#1

1. linear 2.	2. neither	3. exponential		4. Exponential because for each input change of $5, f$ changes proportionally by a ratio of 3 .			
5. Linear because for each input change of 4, f changes at a constant rate -3 .		6. R		7. Slope of 2	8.	Ratio of 3	9. Slope of 6
$\text { 10. } \begin{aligned} y-12 & =-3(x-8) \\ & \text { or } \\ y-6 & =-3(x-10) \end{aligned}$	11. $y-5=7($ or $y-40=$	$\begin{aligned} & -3) \\ & (x-8) \end{aligned}$	12. $y=12 \cdot\left(\sqrt{\frac{1}{2}}\right)^{x-8}$ or $y=6 \cdot\left(\sqrt{\frac{1}{2}}\right)^{x-10}$			13. y y	$\begin{aligned} & \cdot(\sqrt[5]{8})^{x-3} \\ & \text { or } \\ & 0 \cdot(\sqrt[5]{8})^{x-8} \end{aligned}$

