

Write your questions and thoughts here!

Using your knowledge of exponential functions, sketch the general shape of each exponential function with the given parameters.

-	1 . 4			
	b > 1	0 < b < 1		
<i>a</i> > 0				
<i>a</i> < 0				
		↓		
Charact	visting of Exponential Eurotians	↓		
Characte	eristics of Exponential Functions	<u>↓</u>		
Characte Exponential	Functions have the following characteristics. are always increasing or always decreasing	↓		
Characte Exponential • They	Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i	↓		
Characte Exponential • They • Thei	ristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i graphs are always concave up or always con	nterval.)		
Characte Exponential • They • Thei	Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i graphs are always concave up or always con Their graphs do not have inflection points.	nterval.)		
Characte Exponential • They • Thei • If the	Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i graphs are always concave up or always con Their graphs do not have inflection points. input values increase or decrease without bou	nterval.) acave down . and, the end-behavior can be expressed as		
Characte Exponential • They • Thei • If the	Pristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i graphs are always concave up or always con Their graphs do not have inflection points. Finput values increase or decrease without bound $\lim_{x \to +\infty} ab^x = $ or $\lim_{x \to +\infty} ab^x$	the end-behavior can be expressed as $a^{x} = 0$ or $\lim_{x \to +\infty} ab^{x} = 0$		
Characte Exponential • They • Thei • If the	Pristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i graphs are always concave up or always con Their graphs do not have inflection points. input values increase or decrease without bound $\lim_{x \to \pm \infty} ab^x = $ or $\lim_{x \to \pm \infty} ab^x$	the end-behavior can be expressed as $a = 0 r \lim_{x \to \pm \infty} ab^x = 0$		
Characte Exponential • They • Thei • If the Answer th	Tristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i regraphs are always concave up or always con Their graphs do not have inflection points. Their graphs do not have inflection points. Finput values increase or decrease without bound $\lim_{x \to \pm \infty} ab^x = \text{ or } \lim_{x \to \pm \infty} ab^2$ e questions for each exponential function.	the end-behavior can be expressed as $a^{x} = 0$ or $\lim_{x \to \pm \infty} ab^{x} = 0$		
Characte Exponential • They • Thei • If the Answer th 7. $f(x) =$	Pristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i graphs are always concave up or always con Their graphs do not have inflection points. Their graphs do not have inflection points. Finput values increase or decrease without bound $\lim_{x \to \pm \infty} ab^x = \text{ or } \lim_{x \to \pm \infty} ab^2$ e questions for each exponential function. $5(0.9)^x$	$\int dx = \int dx = $		
Characte Exponential • They • Thei • If the Answer th 7. $f(x) =$ a. Is the f	Pristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i r graphs are always concave up or always con Their graphs do not have inflection points. Their graphs do not have inflection points. Find the inflection points is input values increase or decrease without bound $\lim_{x \to \pm \infty} ab^x = \text{ or } \lim_{x \to \pm \infty} ab^2$ Example to the equestions for each exponential function. For the increasing or decreasing? A substitution increasing or decreasing? The input values increase or decreasing?	the terval.) a cave down . and, the end-behavior can be expressed as $a^{x} = 0$ or $\lim_{x \to \pm \infty} ab^{x} = 0$ $f(x) = -6(2)^{x}$ Is the function increasing or decreasing?		
Characte Exponential • They • Thei • If the • If the Answer th 7. $f(x) =$ a. Is the f b. Is the f	Pristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i graphs are always concave up or always con Their graphs do not have inflection points. Their graphs do not have inflection points. Their graphs do not have inflection points. Find $ab^x = \text{or } \lim_{x \to \pm \infty} ab^2$ e questions for each exponential function. $5(0.9)^x$ a. unction increasing or decreasing? a. unction concave up or concave down? b.	$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$		
Character Exponential • They • Thei • If the • If the 7. $f(x) =$ a. Is the f b. Is the f c. Find $\lim_{x \to \infty} x^{-1} = x^{-1}$	Pristics of Exponential Functions Functions have the following characteristics. are always increasing or always decreasing There are no extrema. (Except on a closed i r graphs are always concave up or always con Their graphs do not have inflection points. Their graphs do no	the function increasing or decreasing? Is the function concave up or concave dowr Find $\lim_{x \to -\infty} f(x) =$		

Additive Transformation of an Exponential Function

Let g(x) = f(x) + k. This just means we take a function f and add something to it to shift the graph up or down. The function f is having k added to it to create g.

If the output values of g are proportional over equal-length input-value intervals, then f is exponential.

2.3 Exponential Functions

AP Precalculus

7.3 P	rach	Ce

Identify if the function is exponential growth or decay and justify your response.					
1. $f(x) = 9(3.1)^x$	2. $f(x) = 6.8(0.4)^x$	3. $f(x) = 2.1(0.06)^x$	$4. f(x) = 8\left(\frac{11}{5}\right)^x$		
Exponential Growth or Decay	Exponential Growth or Decay	Exponential Growth or Decay	Exponential Growth or Decay		
5. $f(x) = 1.5 \left(\frac{3}{4}\right)^x$	$6. f(x) = \frac{7}{6} \left(\frac{6}{7}\right)^x$	7. $f(x) = \frac{12}{17} \left(\frac{17}{12}\right)^x$	8. $f(x) = 18(5.6)^x$ Exponential		
Exponential Growth or Decay	Exponential Growth or Decay	Exponential Growth or Decay	Growth or Decay		
The following values are ou constants. Write the function	tput values of an exponential on along with the input value	function of the form $f(x) =$ that represents the output va	$a \cdot b^x$, where a and b are alue.		
9. 3 · 3 · 3 · 3 · 3 · 3 · 3 · 7	$10. \ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 6$	11. $5 \cdot 5 \cdot 5$	$12. (-2) \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$		
f(x) =	f(x) =	f(x) =	f(x) =		
where $x =$	where $x =$	where $x =$	where $x =$		
Answer the questions for ea	ch exponential function				
13. $f(x) = 7(2)^x$		14. $f(x) = -4(5)^x$			
a. Is the function increasing	or decreasing?	a. Is the function increasing	or decreasing?		
a. Is the function increasingb. Is the function concave up	or decreasing? p or concave down?	a. Is the function increasingb. Is the function concave up	or decreasing? o or concave down?		
 a. Is the function increasing b. Is the function concave up c. Find lim_{x→-∞} f(x) = 	or decreasing? p or concave down?	 a. Is the function increasing b. Is the function concave up c. Find lim_{x→-∞} f(x) = 	or decreasing?		
 a. Is the function increasing b. Is the function concave up c. Find lim_{x→-∞} f(x) = d. Find lim_{x→∞} f(x) = 	or decreasing? p or concave down?	 a. Is the function increasing b. Is the function concave up c. Find lim _{x→-∞} f(x) = d. Find lim _{x→∞} f(x) = 	or decreasing?		
a. Is the function increasing b. Is the function concave up c. Find $\lim_{x\to-\infty} f(x) =$ d. Find $\lim_{x\to\infty} f(x) =$ 15. $f(x) = (0.2)^x$	or decreasing? p or concave down?	 a. Is the function increasing b. Is the function concave up c. Find lim f(x) = d. Find lim f(x) = 16. f(x) = -6(0.8)^x 	or decreasing?		
 a. Is the function increasing b. Is the function concave up c. Find lim f(x) = d. Find lim f(x) = 15. f(x) = (0.2)^x a. Is the function increasing 	or decreasing? p or concave down? or decreasing?	 a. Is the function increasing b. Is the function concave up c. Find lim_{x→∞} f(x) = d. Find lim_{x→∞} f(x) = 16. f(x) = -6(0.8)^x a. Is the function increasing 	or decreasing?		
 a. Is the function increasing b. Is the function concave up c. Find lim f(x) = d. Find lim f(x) = 15. f(x) = (0.2)^x a. Is the function increasing b. Is the function concave up 	or decreasing? p or concave down? or decreasing? p or concave down?	 a. Is the function increasing b. Is the function concave up c. Find lim f(x) = d. Find lim f(x) = 16. f(x) = -6(0.8)^x a. Is the function increasing b. Is the function concave up 	or decreasing? o or concave down? or decreasing? o or concave down?		
 a. Is the function increasing b. Is the function concave up c. Find lim f(x) = d. Find lim f(x) = 15. f(x) = (0.2)^x a. Is the function increasing b. Is the function concave up c. Find lim f(x) = 	or decreasing? p or concave down? or decreasing? p or concave down?	 a. Is the function increasing b. Is the function concave up c. Find lim f(x) = d. Find lim f(x) = 16. f(x) = -6(0.8)^x a. Is the function increasing b. Is the function concave up c. Find lim f(x) = 	or decreasing? o or concave down? or decreasing? o or concave down?		

17.
$$f(x) = 6\left(\frac{1}{9}\right)^x$$

- a. Is the function increasing or decreasing?
- b. Is the function concave up or concave down?
- c. Find $\lim_{x \to -\infty} f(x) =$
- d. Find $\lim_{x \to \infty} f(x) =$

2.3 Exponential Functions

19.

18.	f(x) =	$-(0.4)^{x}$

- a. Is the function increasing or decreasing?
- b. Is the function concave up or concave down?

c. Find
$$\lim_{x \to -\infty} f(x) =$$

d. Find $\lim_{x \to \infty} f(x) =$

2.3 Test Prep

x	0	1	2	3	4
f(x)	40	20	10	5	<u>5</u> 2

The exponential function f is defined by $f(x) = ab^x$, where a and b are positive constants. The table gives values of f(x) at selected values of x. Which of the following statements is true?

- (A) f demonstrates exponential decay because a > 0 and 0 < b < 1.
- (B) f demonstrates exponential decay because a > 0 and b > 1.
- (C) f demonstrates exponential growth because a > 0 and 0 < b < 1.
- (D) f demonstrates exponential growth because a > 0 and b > 1.
- 20. The function h is a function of the form $h(x) = a \cdot b^x$, where $a \neq 0$ and b > 1. The function h is also given by h(x) = f(x) + 2. Which of the following statements is true.
 - (A) The output values of both f and h are proportional over equal-length input-value intervals.
 - (B) The output values of f only, not h, are proportional over equal-length input-value intervals.
 - (C) The output values of h only, not f, are proportional over equal-length input-value intervals.
 - (D) The output values of neither f nor h are proportional over equal-length input-value intervals.