Find the inverse of each function and list the domain and range of $\boldsymbol{f}^{-1}(\boldsymbol{x})$.

$$
\begin{aligned}
& \text { 1. } f(x)=(x-3)^{3}+4 \\
& x-4=(y-3)^{3} \\
& \sqrt[3]{x-4}=y-3 \\
& f^{-1}(x)=\sqrt[3]{x-4}+3
\end{aligned}
$$

Range of $f^{-1}(x): \mathbb{R}$
4. $f(x)=\sqrt{x+2}-3$
$\begin{array}{ll}x+3=\sqrt{y+2} & \text { D: } x \geq-2 \\ R: y \geq-3\end{array}$

$$
(x+3)^{2}=y+2
$$

Domain of $f^{-1}(x): \quad x \geq-3$
Range of $f^{-1}(x): \quad y \geq-2$
7. $f(x)=-(x+4)^{2}-1$ for $x \leq-4$

$$
\begin{aligned}
& x+1=-(y+4)^{2} \quad D: x \leq-4 \\
& -x-1=(y+4)^{2} \quad y: y \leq-1 \\
& \pm \sqrt{-x-1}=y+4 \\
& f^{-1}(x)=-\sqrt{-x-1}-4
\end{aligned}
$$

Domain of $f^{-1}(x): \quad x \leq-1$
Range of $f^{-1}(x): \quad y \leq-4$

$$
\begin{aligned}
& \text { 2. } f(x)=\frac{1}{7} x+6 \\
& x-6=\frac{1}{7} y \\
& f^{-1}(x)=7 x-42
\end{aligned}
$$

Domain of $f^{-1}(x): \mathbb{R}$

Range of $f^{-1}(x): \mathbb{R}$
5. $f(x)=(x-2)^{2}+5$ for $x \leq 2$ $\begin{array}{ll}x-5=(y-2)^{2} & D: x \leq 2 \\ +\sqrt{x-5}=y-2 & R: y \geq 5\end{array}$ $\pm \sqrt{x-5}=y-2$

$$
f^{-1}(x)=(x+3)^{2}-2
$$

$$
f^{-1}(x)=-\sqrt{x-5}+2
$$

Domain of $f^{-1}(x): \quad x \geq 5$

$$
\text { Range of } f^{-1}(x): \quad y \leq 2
$$

$$
\begin{gathered}
\begin{array}{c}
8(x)=-\sqrt{x+1}+3 \\
x-3=-\sqrt{y+1} \quad D: \\
0 \geq-1 \\
(x-3)^{2}=y+1 \\
R: y \leq 3 \\
f^{-1}(x)=(x-3)^{2}-1
\end{array}
\end{gathered}
$$

Domain of $f^{-1}(x): \quad x \leq 3$

$$
\text { Range of } f^{-1}(x): \quad y \geq-1
$$

$$
\begin{array}{ll}
\text { 3. } f(x)=(x+1)^{2}-2 \text { for } x \geq-1 \\
x+2=(y+1)^{2} & \text { D: } x \geq-1 \\
\pm \sqrt{x+2}=y+1 & \text { R: } y \geq-2 \\
f^{-1}(x)=\sqrt{x+2}-1
\end{array}
$$

$$
\text { Domain of } f^{-1}(x): \times \geq-2
$$

Range of $f^{-1}(x)$:

$$
y \geq-1
$$

$$
\begin{aligned}
& \text { 6. } f(x)=\frac{2}{x-1} \quad \text { D: R, } x \neq 1 \\
& x=\frac{2}{y-1} \quad \text { R:R, } y \neq 0 \\
& x(y-1)=2 \\
& x y-x=2 \\
& x y=2+x \\
& f^{-1}(x)=\frac{2}{x}+1
\end{aligned}
$$

$$
\text { Domain of } f^{-1}(x): \mathbb{R}, x \neq 0
$$

Range of $f^{-1}(x): \mathbb{R}, y \neq 1$

$$
\begin{aligned}
& \text { 9. } f(x)=\frac{2 x+5}{3 x-4} \quad D: \mathbb{R}, x \neq 4 / 3 \\
& x(3 y-4)=2 y+5 \quad R: \mathbb{R}, y \neq 2 / 3 \\
& 3 x y-4 x=2 y+5 \\
& 3 x y-2 y=4 x+5 \\
& y(3 x-2)=4 x+5 \\
& f^{-1}(x)=\frac{4 x+5}{3 x-2}
\end{aligned}
$$

$$
\text { Domain of } f^{-1}(x): \text { 胥, } \times \neq 2 / 3
$$

Range of $f^{-1}(x): ~ R, y \neq 4 / 3$

Use the tables below to find the given values.
10.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
1	-2
2	3
3	6
4	2
5	4
6	1

a. $f(1)-2$
b. $f(6) \quad \mid$
c. $f^{-1}(1) 6$
d. $f^{-1}(4) \bar{\zeta}$
e. $f(2) 3$
f. $f^{-1}(6) 3$
11.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	2
-1	7
2	10
7	-3
8	-1
10	8

a. $f(2) \quad 0$
d. $f^{-1}(-3) 7$
a. $f(-10)-6$
e. $f(7)-3$
f. $f^{-1}(2)-3$
12.
b. $f(10) 8$
c. $f^{-1}(7)-1$
c. $f^{-1}(7)-6$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-10	-6
-6	7
-2	-10
3	11
7	3
11	-2

d. $f^{-1}(-6)-10$
f. $f^{-1}(-2) \quad| |$

The graph of a function is given below. Identify if the function is invertible. Sketch the graph of the inverse regardless of whether or not it is invertible.

Is $f(x)$ invertible?

Determine if the two functions are inverses of each other using composition.

Is $g(x)$ invertible?
no

Is $h(x)$ invertible?

yes
16. $f(x)=3 x+5$ and $g(x)=\frac{1}{3} x-\frac{5}{3}$

$$
\begin{gathered}
f(g(x)) \\
3\left(\frac{1}{3} x-5 / 3\right)+5 \\
x-5+5 \\
x \quad \sqrt{5}
\end{gathered}
$$

$$
\begin{gathered}
g(f(x)) \\
\frac{1}{3}(3 x+5)-5 / 3 \\
x+5 / 3-5 / 3 \\
x \quad l
\end{gathered}
$$

17. $f(x)=\sqrt[3]{3-x}$ and $g(x)=x^{3}-3$

$$
\sqrt{\frac{3}{3-(g(x)-3)}}
$$

$$
9(f(x))
$$

$$
(\sqrt[3]{3-x})^{3}-3
$$

$$
3-x-3
$$

No!

$$
-x
$$

2.8 Inverse Functions

18. The graph of the piecewise-linear function f is shown in the figure. Let g be the inverse function of f. What is the minimum value of g ?
(A) -4

(C) 2
(D) 3

19. Mr. Brust is filling up his backdoor kiddie pool with the water hose. The amount of water, in gallons, in the pool t minutes after he turns on the water can be modeled by P, an increasing function of time t. Which of the following gives a verbal representation of the function P^{-1}, the inverse of P ?
(A) P^{-1} is an increasing function of the amount of time after the water is turned on.
(B) P^{-1} is a decreasing function of the amount of time after the water is turned on.
(C) P^{-1} is an increasing function of the amount of water in the pool.
(D) P^{-1} is a decreasing function of the amount of water in the pool.
20.

x	1	2	3	4	5
$f(x)$	-18	-10	-3	1	26

Calculator active. Let f be an increasing function for $x \geq 0$. The table gives values of $f(x)$ at selected values of x. The function g is given by $g(x)=\frac{x^{4}+16 x^{3}+50}{x-2}$
a. The function h is defined by $h(x)=(g \circ f)(x)=g(f(x))$. Find the value of $h(2)$ as a decimal approximation or indicate that it is not defined.

$$
g(f(2))=g(-10) \sim 495.833
$$

b. Find the value of $f^{-1}(1)$, or indicate that it is not defined.

$$
f^{-1}(1)=4
$$

