Lines
$\theta=\frac{\pi}{3}$

Circles

Roses

Cycle:

Positive	Negative

Cycle:

Positive	Negative

Odd \boldsymbol{n} Cosine

$r=4 \cos (3 \theta)$

Odd \boldsymbol{n} Sine

$$
r=3 \sin (5 \theta)
$$

Cycle:

Cycle:
\# of petals:
\# of petals:

Even \boldsymbol{n} Cosine

$$
r=4 \cos (2 \theta)
$$

\# of petals:
Cycle:

Even \boldsymbol{n} Sine

Cycle:

Describe the polar function.

$r=2 \cos (7 \theta)$			$r=9 \sin (\theta)$			$r=8 \sin (6 \theta)$		
Type:			Type:			Type:		
Line	Circle Opens:	Rose Petals:	Line	Circle Opens:	Rose Petals:	Line	Circle Opens:	Rose Petals:
Max distance from pole:			Max distance from pole:			Max distance from pole:		
Cycle:			Cycle:			Cycle:		

Write the equation of the following polar functions. Answer the questions.

Equation:

Equation:

Equation:

Sketch a graph. Find the endpoints of the restricted domain and highlight on the function.

Endpoints of $\frac{\pi}{6} \leq \theta \leq \pi$

Endpoints of $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$

Endpoints of $\frac{\pi}{2} \leq \theta \leq \pi$

Describe the equation of the polar function. Fill in the table.

1. $r=6 \cos (5 \theta)$

Type:

Line	Circle Opens:	Rose Petals:

Max distance from pole:
Cycle:

$\boldsymbol{\theta}$	\boldsymbol{r}
$\frac{\pi}{6}$	
π	

4. $r=\cos (6 \theta)$

Type:

Line	Circle	Rose
	Opens:	Petals:

Max distance from pole:
Cycle:

$\boldsymbol{\theta}$	\boldsymbol{r}
$\frac{\pi}{6}$	
$\frac{\pi}{2}$	

2. $r=4 \sin (\theta)$

Type:

Line	Circle	Rose
	Opens:	Petals:

Max distance from pole:
Cycle:

$\boldsymbol{\theta}$	\boldsymbol{r}
$\frac{\pi}{3}$	
$\frac{\pi}{2}$	

5. $\theta=\frac{2 \pi}{3}$

Type:
$\begin{array}{ccc}\text { Line } & \text { Circle } & \text { Rose } \\ & \text { Opens: } & \text { Petals: }\end{array}$
Max distance from pole:
Cycle:

$\boldsymbol{\theta}$	\boldsymbol{r}
	5
	-2

3. $r=7$

Type:

Line	Circle	Rose Center:
	Petals:	

Max distance from pole:
Cycle:

$\boldsymbol{\theta}$	\boldsymbol{r}
$\frac{\pi}{4}$	
$\frac{3 \pi}{2}$	

6. $r=-8 \sin (3 \theta)$

Type:

Line	Circle	Rose
	Opens:	Petals:

Max distance from pole:
Cycle:

$\boldsymbol{\theta}$	\boldsymbol{r}
$\frac{\pi}{4}$	
$\frac{\pi}{2}$	

Write the equation of the polar function.

Equation:
8.

Equation:
9.

Equation:

Write the equation of the polar function.

Equation:
13.

Equation:
11.

Equation:
14.

Equation:
12.

Equation:
15.

Equation:

Sketch a graph. Find the endpoints of the restricted domain and highlight this interval on the function.

 (Use graphing calculator to verify your answers)16. $r=3$

Endpoints of $\frac{\pi}{6} \leq \theta \leq \pi$
17. $r=4 \cos (3 \theta)$

Endpoints of $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$
18. $r=5 \sin (\theta)$

Endpoints of $\frac{\pi}{2} \leq \theta \leq \pi$
19. Which of the following is the graph of the polar function $r=f(\theta)$, where $f(\theta)=-4 \cos \theta$, in the polar coordinate system for $0 \leq \theta \leq 2 \pi$?

20. The graph of polar function $r=f(\theta)$ and $r=g(\theta)$, where $f(\theta)=4 \cos \theta$ and $g(\theta)=-4 \sin \theta$, in the polar coordinate system for $0 \leq \theta \leq 2 \pi$. Which of the following is a possible polar coordinate for $f(\theta)=g(\theta)$?
(A) $\left(2 \sqrt{2}, \frac{\pi}{4}\right)$
(B) $\left(2 \sqrt{2}, \frac{3 \pi}{4}\right)$
(C) $\left(2 \sqrt{2}, \frac{5 \pi}{4}\right)$
(D) $\left(2 \sqrt{2}, \frac{7 \pi}{4}\right)$
21. The graph of the polar function $r=f(\theta)$, is given the polar coordinate system. Which of the following defines $f(\theta)$ for $0 \leq \theta \leq 2 \pi$?
(A) $f(\theta)=3 \sin (2 \theta)$
(B) $f(\theta)=3 \sin (4 \theta)$
(C) $f(\theta)=3 \cos (2 \theta)$
(D) $f(\theta)=3 \cos (4 \theta)$

