3.14A Polar Function Graphs

AP Precalculus

Describe the equation of the polar function. Fill in the table.

1. $r=6 \cos (5 \theta)$

Type:
Line
Circle Opens:

Max distance from pole: 6
Cycle: $[0, \pi]$

$6 \cos \left(5 \cdot \frac{\pi}{6}\right)$	\boldsymbol{r}	
$6 \cos \left(\frac{5 \pi}{6}\right)$	$\frac{\pi}{6}$	$-3 \sqrt{3}$
$6\left(-\frac{\sqrt{3}}{2}\right)$	π	-6
	$-3 \sqrt{3}$	

4. $r=\cos (6 \theta)$

Type:

Max distance from pole: 1
Cycle: $[0,2 \pi]$

$\boldsymbol{\theta}$	\boldsymbol{r}	$\cos \left(6 \cdot \frac{\pi}{2}\right)$
$\frac{\pi}{6}$	-1	$\cos (3 \pi)$
$\frac{\pi}{2}$	-1	-1

2. $r=4 \sin (\theta)$

Type:

Max distance from pole: 4
Cycle: $[0, \pi]$
$64 \sin \left(\frac{\beta \pi}{3}\right)$

3. $r=7$

Type:
Line

Max distance from pole: 7
Cycle: $[0,2 \pi]$
$r=?$

$\boldsymbol{\theta}$	\boldsymbol{r}
$\frac{\pi}{4}$	7
$\frac{3 \pi}{2}$	7

6. $r=-8 \sin (3 \theta)$ Type:
Line
Circle
Opens:

Max distance from pole: 8
Cycle: $[0, \pi]$

$-8 \sin \left(3 \cdot \frac{\pi}{4}\right)$			
$-8 \sin \left(\frac{3 \pi}{4}\right)$	θ	r	$-\sin \left(3 \cdot \frac{\pi}{2}\right)$
$-8 \cdot \frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$	$-4 \sqrt{2}$	$-8 \cdot \sin \left(\frac{3 \pi}{2}\right)$
	$-4 \sqrt{2}$	$\frac{\pi}{2}$	8

Write the equation of the polar function.

7.

Equation: $r=4 \cos (2 \theta)$
rose starts on polar axis = cosine
8.

Equation: $r=3 \cos (\theta)$
circle that opens right $=+$ cosine
9.

Equation: $r=5 \sin (3 \theta)$ rose does not start on polar axis = sine
© The Algebros from FlippedMath.com

Write the equation of the polar function.

10.

Equation: $r=5 \sin (\theta)$ circle that opens up $=+$ sine
13.

Equation: $\theta=\frac{5 \pi}{6}$ or $\frac{11 \pi}{6}$
11.

Equation: $r=2$
14.

Equation: $r=5 \sin (4 \theta)$
rose does not start on polar axis

$$
=\text { sine }
$$

12.

Equation: $r=4 \cos (5 \theta)$
rose starts on polar axis = cosine
15.

Equation: $r=-2 \cos (\theta)$
circle that opens left $=-$ cosine

Sketch a graph. Find the endpoints of the restricted domain and highlight this interval on the function. (Use graphing calculator to verify your answers)
16. $r=3$

Endpoints of $\frac{\pi}{6} \leq \theta \leq \pi$
$\left(3, \frac{\pi}{6}\right)$
$(3, \pi)$
17. $r=4 \cos (3 \theta)$

Endpoints of $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$
$4 \cos \left(3 \cdot \frac{\pi}{6}\right) \quad 4 \cos \left(3 \cdot \frac{\pi}{3}\right)$
$\begin{array}{cc}4 \cos \left(\frac{\pi}{2}\right) & 4 \cos (\pi) \\ 4(0) & 4(-1)\end{array}$
© The Algebros from FlippedMath.com
19. Which of the following is the graph of the polar function $r=f(\theta)$, where $f(\theta)=-4 \cos \theta$, in the polar coordinate system for $0 \leq \theta \leq 2 \pi$?
negative cosine circle so it opens left and has radius of 4

20. The graph of polar function $r=f(\theta)$ and $r=g(\theta)$, where $f(\theta)=4 \cos \theta$ and $g(\theta)=-4 \sin \theta$, in the polar coordinate system for $0 \leq \theta \leq 2 \pi$. Which of the following is a possible polar coordinate for $f(\theta)=g(\theta)$?
(A) $\left(2 \sqrt{2}, \frac{\pi}{4}\right)$
(B) $\left(2 \sqrt{2}, \frac{3 \pi}{4}\right)$
(C) $\left(2 \sqrt{2}, \frac{5 \pi}{4}\right)$
(D) $\left(2 \sqrt{2}, \frac{7 \pi}{4}\right)$

$$
\frac{4 \cos \theta}{4}=\frac{-4 \sin \theta}{4}
$$

$$
\cos \theta=-\sin \theta
$$

$$
\theta=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4}
$$

$$
4 \cos \left(\frac{7 \pi}{4}\right)=-4 \sin \left(\frac{7 \pi}{4}\right)
$$

$$
r=2 \sqrt{2} \longrightarrow 4\left(\frac{\sqrt{2}}{2}\right)=-4\left(-\frac{\sqrt{2}}{2}\right)
$$

21. The graph of the polar function $r=f(\theta)$, is given the polar coordinate system. Which of the following defines $f(\theta)$ for $0 \leq \theta \leq 2 \pi$?
(A) $f(\theta)=3 \sin (2 \theta)$
(B) $f(\theta)=3 \sin (4 \theta)$
(C) $f(\theta)=3 \cos (2 \theta)$
(D) $f(\theta)=3 \cos (4 \theta)$
sine rose because it doesn't start on polar aixs has 4 petals which is even so $n=2$
 maximum distance from pole is 3
