3.14B Polar Function Graphs

AP Precalculus

3.14B Practice

Match the equation to its graph below.

1. $r = 2 + 6\cos(\theta)$ matches graph:

 $2. \quad r = 2 - 6\sin(\theta)$

matches graph: B

 $3. \quad r = 3 + 3\cos(\theta)$

matches graph: ____

4. $r = 3 - 3\cos(\theta)$

matches graph: ______

5. $r = 2 - 4\cos(\theta)$

matches graph: A

6. $r = 4 + 2\sin(\theta)$

matches graph:

7. $r = 4 - 2\cos(\theta)$

matches graph: ____

8. $r = \theta$

matches graph: 6

9. $r = -6\cos(\theta)$

matches graph: _____

10. $r = 6 - 2\sin(\theta)$

matches graph:

11. r = 4

matches graph: _____

12. $r = 6\sin(\theta)$

matches graph:

GRAPHS:

Circle the correct equation for the following polar graphs.

$$r = 4 + 2\cos(\theta) \qquad r = 4 + 2\sin(\theta)$$

$$r = 2 - 4\cos(\theta) \qquad r = 2 - 4\sin(\theta)$$

$$r = 4 - 2\cos(\theta)$$
 $r = 4 - 2\sin(\theta)$

$$r = 3 + 2\cos(\theta)$$
 $r =$

$$r = 2 - 3\cos(\theta)$$

$$r = 3 - 2\cos(\theta)$$

$$r = 3 + 2\sin(\theta)$$

$$r=2-3\sin(\theta)$$

$$r = 3 - 2\sin(\theta)$$

$$r = 3 + 3\cos(\theta)$$

$$r = 3 + 3\sin(\theta)$$

$$r = 3 - 3\cos(\theta)$$

$$r = 3 - 3\sin(\theta)$$

$$r = 6 - 6\cos(\theta)$$

$$r = 6 - 6\sin(\theta)$$

Use the graphs of the polar function $r = f(\theta)$ and $y = f(\theta)$ for $0 \le \theta \le 2\pi$ to answer the following.

16.

If the domain of f is restricted to $\frac{3\pi}{2} \le \theta \le 2\pi$,

- Is the function positive or negative?
- b. Is the function increasing or decreasing?

If the domain of f is restricted to $\pi \le \theta \le \frac{3\pi}{2}$,

- a. Is the function positive or negative)
- b. Is the function increasing or decreasing?

18.

If the domain of f is restricted to $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$,

- a. Is the function positive or negative?
- b. Is the function increasing or decreasing?

If the domain of f is restricted to $0 \le \theta \le \frac{\pi}{2}$,

- a. Is the function positive or negative?
- b. Is the function increasing of decreasing?

3.14B Polar Function Graphs

20. Which of the following is the graph of the polar function $r = f(\theta)$, where $f(\theta) = 4 - 4\cos\theta$, in the polar coordinate system for $0 \le \theta \le 2\pi$?

Cardioid a = b. Negative cosine opens left. Distance from pole is 4 + 4 = 8

- 21. The polar function $r = f(\theta)$, where $f(\theta) = \frac{\pi}{3}\theta$, is defined for $\theta > 0$. Which of the following describes the graph of $r = f(\theta)$ in the polar coordinate system?
 - (A) The graph of $r = f(\theta)$ is line along the angle $\frac{\pi}{3}$
 - (B) The graph of $r = f(\theta)$ is a circle with radius of $\frac{\pi}{3}$
 - (C) The graph of $r = f(\theta)$ is a spiral with increasing radius
 - (D) The graph of $r = f(\theta)$ is a spiral with decreasing radius
- Spiral $r = \theta$ with increasing radius
 - $\frac{\pi}{3}$ is coefficient
- $r = \frac{1}{\theta}$ would be spiral with decreasing radius
- 22. The graph of the polar function $r = f(\theta)$, is given the polar coordinate system. Which of the following defines $f(\theta)$ for $0 \le \theta \le 2\pi$?

(B)
$$f(\theta) = 4 - 4\sin(\theta)$$

(C)
$$f(\theta) = 2 - 2\sin(\theta)$$

(D)
$$f(\theta) = 2 - 6\sin(\theta)$$

Inner Loop Limaçon a < b

Negative sine opens down

Inner loop is 2 so b - a = 2

Mas distance from pole is a + b = 8

