Match the equation to its graph below.

1. $r=2+6 \cos (\theta)$ matches graph:	2. $r=2-6 \sin (\theta)$ matches graph:	3. $r=3+3 \cos (\theta)$ matches graph:
4. $r=3-3 \cos (\theta)$ matches graph:	5. $r=2-4 \cos (\theta)$ matches graph:	6. $r=4+2 \sin (\theta)$ matches graph:
7. $r=4-2 \cos (\theta)$ matches graph:	8. $r=\theta$ matches graph: \qquad	9. $r=-6 \cos (\theta)$ matches graph:
10. $r=6-2 \sin (\theta)$ matches graph:	11. $r=4$ matches graph:	12. $r=6 \sin (\theta)$ matches graph:

GRAPHS:

Circle the correct equation for the following polar graphs.

13.
$r=4+2 \cos (\theta) \quad r=4+2 \sin (\theta)$
$r=2-4 \cos (\theta) \quad r=2-4 \sin (\theta)$
$r=4-2 \cos (\theta) \quad r=4-2 \sin (\theta)$
14.

$r=3+2 \cos (\theta) \quad r=3+2 \sin (\theta)$
$\begin{array}{ll}r=2-3 \cos (\theta) & r=2-3 \sin (\theta) \\ r=3-2 \cos (\theta) & r=3-2 \sin (\theta)\end{array}$
15.

$$
r=3+3 \cos (\theta)
$$

$$
r=3+3 \sin (\theta)
$$

$r=3-3 \cos (\theta)$
$r=3-3 \sin (\theta)$
$r=6-6 \sin (\theta)$

Use the graphs of the polar function $r=f(\theta)$ and $y=f(\theta)$ for $0 \leq \theta \leq 2 \pi$ to answer the following.
16.

If the domain of f is restricted to $\frac{3 \pi}{2} \leq \theta \leq 2 \pi$,
a. Is the functior positive or negative?
b. Is the function increasing or decreasing?

If the domain of f is restricted to $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$,
a. Is the function positive or negative
b. Is the function increasing or decreasing?
17.

If the domain of f is restricted to $\pi \leq \theta \leq \frac{3 \pi}{2}$,
a. Is the function positive or negative
b. Is the function increasing ordecreasing.

If the domain of f is restricted to $0 \leq \theta \leq \frac{\pi}{2}$,
a. Is the functior positive or negative?
b. Is the function increasing o decreasing?
20. Which of the following is the graph of the polar function $r=f(\theta)$, where $f(\theta)=4-4 \cos \theta$, in the polar coordinate system for $0 \leq \theta \leq 2 \pi$?
Cardioid $a=b$. Negative cosine opens left. Distance from pole is $4+4=8$

21. The polar function $r=f(\theta)$, where $f(\theta)=\frac{\pi}{3} \theta$, is defined for $\theta>0$. Which of the following describes the graph of $r=f(\theta)$ in the polar coordinate system?
(A) The graph of $r=f(\theta)$ is line along the angle $\frac{\pi}{3}$
(B) The graph of $r=f(\theta)$ is a circle with radius of $\frac{\pi}{3}$
(C) The graph of $r=f(\theta)$ is a spiral with increasing radius
(D) The graph of $r=f(\theta)$ is a spiral with decreasing radius

Spiral $r=\theta$ with increasing radius $\frac{\pi}{3}$ is coefficient $r=\frac{1}{\theta}$ would be spiral with decreasing radius
22. The graph of the polar function $r=f(\theta)$, is given the polar coordinate system. Which of the following defines $f(\theta)$ for $0 \leq \theta \leq 2 \pi$?
(A) $f(\theta)=3-5 \sin (\theta)$
(B) $f(\theta)=4-4 \sin (\theta)$
(C) $f(\theta)=2-2 \sin (\theta)$
(D) $f(\theta)=2-6 \sin (\theta)$

Inner Loop Limaçon $a<b$
Negative sine opens down
Inner loop is 2 so $b-a=2$

Mas distance from pole is $a+b=8$

