3.2B Sine, Cosine, and Tangent

b. $\cos \theta = \frac{-1.96}{5} = -0.392$

c. $\tan \theta = \frac{4.6}{-1.96} \approx -2.3469$

- 7. In the *xy*-plane, angle *ABC* is an angle in standard position with terminal ray *BC*, which intersects the unit circle at the point with coordinates (0.6, -0.8). Which of the following descriptions is correct?
 - (A) The sine of angle *ABC* is $-\frac{4}{3}$.
 - (B) The sine of angle ABC is $-\frac{3}{4}$.
 - (C) The sine of angle *ABC* is 0.6.

```
(D) The sine of angle ABC is -0.8.
```

8. An angle θ is in standard position in the *xy*-plane. On the interval $0 \le \theta \le 2\pi$ (one full circle), in which quadrant(s) would the terminal ray of the angle be located for each statement?

a.
$$\sin \theta < 0$$

b.
$$\cos \theta > 0$$

c. $\tan \theta > 0$

Quadrants I and III

Quadrants III and IV

Quadrants I and IV

- 9. An angle θ is in standard position in the *xy*-plane. Which of the following is true about θ on the interval $0 \le \theta \le 2\pi$ if $\cos \theta < 0$?
 - (A) There is no value of θ on $0 \le \theta \le 2\pi$ for which $\cos \theta < 0$.
 - (B) There are values of θ on $0 \le \theta \le 2\pi$ for which $\cos \theta < 0$ in all four Quadrants.
 - (C) There is a value of θ on $0 \le \theta \le 2\pi$ for which $\cos \theta < 0$ in Quadrant II only.

(D) There are values of θ on $0 \le \theta \le 2\pi$ for which $\cos \theta < 0$ in Quadrants II and III only.

10. The figure shows a circle centered at the origin with an angle of measure θ radians in standard position. The terminal ray of the angle intersects the circle at point *P*, and point *Q* also lies on the circle. The coordinates of *P* are (x, y) and the coordinates of *Q* are (x, -y). Which of the following is true about the cosine of θ ?

(A) $\cos \theta = \frac{x}{2}$, because it is the ratio of the horizontal displacement of *P* from the *y*-axis to the distance between the origin and *P*.

- (B) $\cos \theta = \frac{-y}{2}$, because it is the ratio of the vertical displacement of Q from the x-axis to the distance between the origin and Q.
- (C) $\cos \theta = \frac{y}{2}$, because it is the ratio of the vertical displacement of *P* from the *x*-axis to the distance between the origin and *P*.
- (D) $\cos \theta = \frac{y}{2}$, because it is the ratio of the vertical displacement of Q from the x-axis to the distance between the origin and Q.