Each figure below gives a circle in the $\boldsymbol{x y}$-plane with center at the origin, and an angle $\boldsymbol{\theta}$ in standard position. Find the value of each expression.

a. $\sin \theta=\frac{11.644}{12} \approx 0.970$
b. $\cos \theta=\frac{2.9}{12} \approx 0.2416$
c. $\tan \theta=\frac{11.644}{2.9} \approx 4.015$

a. $\sin \theta=\frac{-0.5}{2}=-0.25$
b. $\quad \cos \theta=\frac{1.937}{2}=0.9685$
c. $\tan \theta=\frac{-0.5}{1.937} \approx-\mathbf{0 . 2 5 8}$
2.

a. $\sin \theta=\frac{-2}{5}=-\mathbf{0 . 4}$
b. $\cos \theta=\frac{-4.58}{5}=-\mathbf{0 . 9 1 6}$
c. $\tan \theta=\frac{-2}{-4.58} \neq 0.4366$
4.

a. $\sin \theta=\frac{4.6}{5}=0.92$
b. $\quad \cos \theta=\frac{-1.96}{5}=-\mathbf{0 . 3 9 2}$
c. $\tan \theta=\frac{4.6}{-1.96} \approx-2.3469$
5.

a. $\sin \alpha=-0.954$
b. $\cos \alpha=-0.3$
c. $\tan \alpha=\frac{-0.954}{-0.3}=3.18$
6.

a. $\sin \alpha=0.9798$
b. $\cos \alpha=-0.2$
c. $\tan \alpha=\frac{0.9798}{-0.2}=-4.899$

3.2B Sine, Cosine, and Tangent

3.2B Test Prep

7. In the $x y$-plane, angle $A B C$ is an angle in standard position with terminal ray $B C$, which intersects the unit circle at the point with coordinates $(0.6,-0.8)$. Which of the following descriptions is correct?
(A) The sine of angle $A B C$ is $-\frac{4}{3}$.

D
(B) The sine of angle $A B C$ is $-\frac{3}{4}$.
(C) The sine of angle $A B C$ is 0.6 .
(D) The sine of angle $A B C$ is -0.8 .
8. An angle θ is in standard position in the $x y$-plane. On the interval $0 \leq \theta \leq 2 \pi$ (one full circle), in which quadrant(s) would the terminal ray of the angle be located for each statement?
a. $\sin \theta<0$
c. $\tan \theta>0$

Quadrants III and IV
b. $\cos \theta>0$

Quadrants I and IV

Quadrants I and III
9. An angle θ is in standard position in the $x y$-plane. Which of the following is true about θ on the interval $0 \leq \theta \leq 2 \pi$ if $\cos \theta<0$?
(A) There is no value of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos \theta<0$.

D
(B) There are values of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos \theta<0$ in all four Quadrants.
(C) There is a value of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos \theta<0$ in Quadrant II only.
(D) There are values of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos \theta<0$ in Quadrants II and III only.
10. The figure shows a circle centered at the origin with an angle of measure θ radians in standard position. The terminal ray of the angle intersects the circle at point P, and point Q also lies on the circle. The coordinates of P are (x, y) and the coordinates of Q are $(x,-y)$. Which of the following is true about the cosine of θ ?

(A) $\cos \theta=\frac{x}{2}$, because it is the ratio of the horizontal displacement of P from the y-axis to the distance between the origin and P.
(B) $\cos \theta=\frac{-y}{2}$, because it is the ratio of the vertical displacement of Q from the x-axis to the distance between the origin and Q.
(C) $\cos \theta=\frac{y}{2}$, because it is the ratio of the vertical displacement of P from the x-axis to the distance between the origin and P.
(D) $\cos \theta=\frac{y}{2}$, because it is the ratio of the vertical displacement of Q from the x-axis to the distance between the origin and Q.

