3.3B Sine and Cosine Function Values

AP Precalculus

Name:

CA #1

For each problem, an angle in standard position in the xy-plane is given in radians. A circle is centered at the origin with the given radius. What are the coordinates of the point of intersection of the terminal ray of the angle and the circle?

1. $\theta = \frac{\pi}{6}, r = 8$

2. $\theta = \frac{3\pi}{4}, r = 7$

3. $\theta = \frac{\pi}{3}, r = 12$

4. $\theta = \frac{5\pi}{3}, r = 3$

5. $\theta = \frac{11\pi}{6}, r = 5$

6. $\theta = \frac{2\pi}{3}, r = 22$

In the xy-plane, the terminal ray of angle θ in standard position intersects a circle of radius r at the given point. What are the values of θ and r?

7. (13,0)

8. $(-2\sqrt{3},2)$

9. $(9\sqrt{2}, -9\sqrt{2})$

10. $\left(-3\sqrt{2}, -3\sqrt{2}\right)$

$6 = r, \frac{\pi^2}{r} = \theta .01$	$81 = \tau, \frac{\pi 7}{\rho} = \theta $	$h = r, \frac{\pi \delta}{\delta} = \theta .8$	$\Sigma I = r, \pi S = \theta$. Γ	6. (-11,11√3)
$S. \left(\frac{5\sqrt{3}}{5}, -\frac{5}{2}\right)$	$4. \left(\frac{\overline{s}\sqrt{s}}{2} - \frac{\varepsilon}{s}\right) . 4$	3. (6,6√3)	$\left(\frac{\overline{z}\sqrt{z}}{z},\frac{\overline{z}\sqrt{z}}{z}-\right) .2$	1. (4√ 3 ,4)

Answers to 3.3B CA #1