For each problem, an angle in standard position in the $x y$-plane is given in radians. A circle is centered at the origin with the given radius. What are the coordinates of the point of intersection of the terminal ray of the angle and the circle?
$\left(4 \cdot \frac{\sqrt{3}}{2}, 4 \cdot \frac{1}{2}\right)$
$(2 \sqrt{3}, 2)$
4. $\theta=\frac{7 \pi}{4}, r=5$
$\left(5 \cdot \frac{\sqrt{2}}{2}, 5 \cdot\left(-\frac{\sqrt{3}}{2}\right)\right)$
$\frac{\left(\frac{5 \sqrt{2}}{2},-\frac{5 \sqrt{2}}{2}\right)}{\text { 7. } \theta=\frac{4 \pi}{3}, r=8}$
$\left(8 \cdot\left(-\frac{1}{2}\right), 8 \cdot\left(-\frac{\sqrt{3}}{2}\right)\right)$

$$
(-4,-4 \sqrt{3})
$$

$$
\left(6 \cdot\left(-\frac{\sqrt{3}}{2}\right), 6 \cdot\left(-\frac{1}{2}\right)\right)
$$

$$
(-3 \sqrt{3},-3)
$$

$$
\text { 6. } \theta=\frac{5 \pi}{3}, r=3
$$

$$
\begin{aligned}
& \left(3 \cdot \frac{1}{2}, 3 \cdot\left(-\frac{\sqrt{3}}{2}\right)\right. \\
& \left(\frac{3}{2},-\frac{3 \sqrt{3}}{2}\right)
\end{aligned}
$$

9. $\theta=\pi, r=9$

$(8,8 \sqrt{3})$
$(-9,0)$

In the $x y$-plane, the terminal ray of angle θ in standard position intersects a circle of radius r at the given point. What are the values of θ and r ?
10. $\frac{(0}{10} \frac{-10}{10}$
$(10.0,10(-1))$

$$
\theta=3 x / 2
$$

$$
r=10
$$

13. $\left(\frac{-9 \sqrt{3}}{18}, \frac{9}{18}\right.$ $\left(18 \cdot\left(-\frac{\sqrt{3}}{2}\right), 18 \cdot\left(\frac{5}{2}\right)\right)$
$\theta=\frac{5 \pi}{6}$

$$
r=18
$$

14. $\frac{(-15}{30}, \frac{-15 \sqrt{3})}{30}$

$\theta=\frac{4 \pi}{3} \quad r=30$

$$
\theta=\frac{1 \pi}{6} \quad r=7
$$

$\left(7 \cdot \frac{\sqrt{3}}{2}, 7\left(-\frac{1}{2}\right)\right)$
3.3B Sine and Cosine Function Values
16. The figure shows a circle of radius 4 along with five labeled points in the $x y$-plane.

$$
\begin{aligned}
& \angle A O C=\pi-\frac{2 \pi}{3} \\
& \angle A O C=\frac{\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} \angle A O C & =\angle A O B \\
\frac{\pi}{6} & =\angle A O B
\end{aligned}
$$

The measure of angle $D O C$ is $\frac{2 \pi}{3}$. The measure of angle $A O B$ is half of angle $A O C$. What are the coordinate points of point B ?

$$
\pi / 6=\angle C O B
$$

(A) $\left(-4 \cos \left(\frac{5 \pi}{6}\right), 4 \sin \left(\frac{5 \pi}{6}\right)\right)$
(B) $\left(4 \cos \left(\frac{5 \pi}{6}\right), 4 \sin \left(\frac{5 \pi}{6}\right)\right)$

$$
\therefore \angle D O B=\frac{2 \pi}{3}+\frac{\pi}{6}
$$

(C) $\left(-2 \cos \left(\frac{5 \pi}{6}\right), 2 \sin \left(\frac{5 \pi}{6}\right)\right)$
(D) $\left(2 \cos \left(\frac{5 \pi}{6}\right), 2 \sin \left(\frac{5 \pi}{6}\right)\right)$

$$
\angle D O B=\frac{5 \pi}{6}
$$

17. Angles A and B are in standard position in the $x y$-plane. The measure of angle A is $\frac{\pi}{6}$ radians, and the measure of angle B is $\frac{11 \pi}{6}$ radians. The terminal rays of both angles intersect a circle centered at the origin with radius 16 . What is the distance between these two points of intersection: the circle and terminal ray of angle A , and the circle and terminal ray of angle B ?
(A) $16 \sin \frac{\pi}{6}-16 \sin \frac{11 \pi}{6}$
(B) $8 \sin \frac{\pi}{6}-8 \sin \frac{11 \pi}{6}$
(C) $16 \cos \frac{\pi}{6}-16 \cos \frac{11 \pi}{6}$
(D) $8 \cos \frac{\pi}{6}-8 \cos \frac{11 \pi}{6}$

18. The figure shows a circle of radius 6 along with the origin and three labeled points in the $x y$-plane. If the coordinates of X are $(3,-3 \sqrt{3})$, what is the measurement of angle $A O X$?

