AP Precalculus

1. An object is moving in the plane so that at any time t, the position of the object at any time t can be found by evaluating the parametric equations $x(t)=t^{2}$ and $y(t)=2 t+1$.
a. Without the use of technology, graph the path of the object for $-2 \leq t \leq 3$.

b. If there were no restrictions on the parameter, what would the position of the object be when $t=4$?

Name:
2. Without the use of technology, determine the horizontal and vertical extrema of the parametric function $f(t)=(t+1, \sqrt{t})$ for $0 \leq t \leq 9$.
a. Find the horizontal relative extrema.
b. Find the vertical relative extrema.

For each parametric function, find the \boldsymbol{x} - and \boldsymbol{y}-intercepts algebraically.
3. $f(t)=\left(t-1, t^{2}-8 t+12\right)$.
a. x-intercept(s).
4. $x(t)=t+2$ and $y(t)=t^{2}-4$ for $0 \leq t \leq 5$.
a. x-intercept(s).
b. y-intercept(s).
5. Without the use of technology, determine the maximum height of an object if the path is modeled by the parametric function $f(t)=\left(t-1, t^{3}\right)$, for $0 \leq t \leq 5$

Answers to 4.2 CA \#1

2.
a. Horizontal Relative Minimum is 1 when $t=0$ Horizontal Relative Maximum is 10 when $t=9$
b. Vertical Relative Minimum is 0 when $t=0$

Vertical Relative Maximum is 3 when $t=9$

3 a. $(5,0)$ when $t=6$ and $(1,0)$ when $t=2$.
4a. $(4,0)$ when $t=2$ (only one in the given domain for t).
3 b . $(0,5)$ when $t=1$.

4 b . none on the given domain of t.
5. Vertical Relative Maximum is 125 when $t=5$.

