AP Precalculus

Name: \qquad

1. An object is moving in the plane so that at any time t, the position of the object at any time t can be found by evaluating the parametric equations $x(t)=t$ and $y(t)=1-\frac{1}{2} t^{2}$.
a. Without the use of technology, graph the path of the object for $-2 \leq t \leq 3$.

b. If there were no restrictions on the parameter, what would the position of the object be when $t=4$?
2. Without the use of technology, determine the horizontal and vertical extrema of the parametric function $f(t)=\left(2 t+1,1-\frac{3}{2} t\right)$ for $-4 \leq t \leq$ 4.
a. Find the horizontal relative extrema.
b. Find the vertical relative extrema.

For each parametric function, find the \boldsymbol{x} - and \boldsymbol{y}-intercepts algebraically.
3. $f(t)=\left(t-1, t^{2}-9 t+14\right)$.
a. x-intercept(s).
4. $x(t)=t+2$ and $y(t)=9-t^{2}$ for $-2 \leq t \leq 3$.
a. x-intercept(s).
b. y-intercept(s).
5. Without the use of technology, determine the minimum height of an object if the path is modeled by the parametric function $f(t)=(t-1,|t|)$, for $-5 \leq t \leq 5$.

Answers to 4.2 CA \#2

3a. $(6,0)$ when $t=7$ and $(1,0)$ when $t=2$.
3 b . $(0,6)$ when $t=1$.
2.
a. Horizontal Relative Minimum is -7 when $t=-4$ Horizontal Relative Maximum is 9 when $t=4$
b. Vertical Relative Minimum is -5 when $t=4$ Vertical Relative Maximum is 7 when $t=-4$
5. Vertical Relative Minimum is 0 when $t=0$.

