For each parametric function, answer each part that follows. A graphing calculator should only be used to check your answers.

1. $f(x)=\left(\frac{1}{2} t, t^{2}-1\right)$ for $-3 \leq t \leq 1$
a. Graph the curve represented by the given parametric function. Indicate the direction of movement of the particle on your graph.

b. Find the horizontal relative extrema.

$$
\begin{aligned}
& \text { Min of }-\frac{3}{2} \text { at } t=-3 \\
& \text { Max of } \frac{1}{2} \text { at } t=1
\end{aligned}
$$

c. Find the vertical relative extrema.

$$
\begin{aligned}
& \text { Min of }-1 \text { at } t=0 . \\
& \text { Max of } 8 \text { at } t=-3 .
\end{aligned}
$$

d. Find the x-intercepts). Show your work.

$$
\begin{aligned}
& t^{2}-1=0 \\
& t^{2}=1 \\
& t= \pm 1 \\
& \begin{array}{l}
\left(-\frac{1}{2}, 0\right) \text { at } t=-1 . \\
\left(\frac{1}{2}, 0\right) \text { at } t=1 .
\end{array}
\end{aligned}
$$

e. Find the y-intercep ts). Show your work.

$$
\begin{aligned}
\frac{1}{2} t & =0 \\
t & =0
\end{aligned}
$$

$$
(0,-1) \text { at } t=0 \text {. }
$$

2. $f(x)=(|t-1|, t+2)$ for $-4 \leq t \leq 4$
a. Graph the curve represented by the given parametric function. Indicate the direction of movement of the particle on your graph.

b. Find the horizontal relative extrema.

$$
\begin{aligned}
& \text { Min of } 0 \text { at } t=1 \\
& \text { Max of } 5 \text { at } t=-4 .
\end{aligned}
$$

c. Find the vertical relative extrema.

$$
\begin{aligned}
& \text { Min of }-2 \text { at } t=-4 . \\
& \text { Max of } 6 \text { at } t=4 .
\end{aligned}
$$

d. Find the x-intercepts). Show your work.

$$
\begin{aligned}
t+2 & =0 \\
t & =-2 \quad \quad(3,0) \text { at } t=-2
\end{aligned}
$$

e. Find the y-intercep ts). Show your work.
$|t-1|=0$

$$
t-1=0 \quad(0,3) \text { at } t=1
$$

3. $f(x)=\left(-(t+1)^{2}+3, t+1\right)$ for $-3 \leq t \leq 2$
a. Graph the curve represented by the given parametric function. Indicate the direction of

b. Find the horizontal relative extrema.

$$
\begin{aligned}
& \text { Min of }-6 \text { at } t=2 . \\
& \text { Max of } 3 \text { at } t=-1 .
\end{aligned}
$$

c. Find the vertical relative extrema.

Min of -2 at $t=-3$.
Max of 3 at $t=2$.
d. Find the x-intercepts). Show your work.

$$
\begin{aligned}
t+1 & =0 \\
t & =-1
\end{aligned}
$$

$$
(3,0) \text { at } t=-1 \text {. }
$$

e. Find the y-intercepts). Show your work.

Calculator active.

$-(t+1)^{2}+3=0$
$-(t+1)^{2}=-3$
$(t+1)^{2}=3$
$t+1= \pm \sqrt{3}$ $t=-1 \pm \sqrt{3}$
$t \approx-2.732$
$t \approx 0.732$
4. $f(x)=\left(t^{3}, t^{2}\right)$ for $-2 \leq t \leq 2$
a. Graph the curve represented by the given parametric function. Indicate the direction of
movement of the particle on your graph. $\quad t=-2(-8,4)$

$$
\begin{aligned}
& t=-1(-1,1) \\
& t=0(0,0) \\
& t=1(1,1) \\
& t=2(8,4)
\end{aligned}
$$

b. Find the horizontal relative extrema.

$$
\text { Min of }-8 \text { at } t=-2 \text {. }
$$

Max of 8 at $t=2$.
c. Find the vertical relative extrema.

Min of 0 at $t=0$.
Max of 4 at $t=-2$ and $t=2$.
d. Find the x-intercepts). Show your work.

$$
\begin{aligned}
& t^{2}=0 \\
& t=0
\end{aligned}
$$

$$
(0,0) \text { at } t=0 \text {. }
$$

e. Find the y-intercepts). Show your work.

$$
\begin{aligned}
& t^{3}=0 \\
& t=0
\end{aligned}
$$

$$
(0,0) \text { at } t=0 \text {. }
$$

5. $f(t)=\left(t^{2}, t^{4}-1\right) \quad$ 6. $f(t)=\left(\ln (2 t), t^{2}\right)$
a. x-intercep ts).
$t^{4}-1=0$
$t^{4}=1$
$t= \pm 1$

$$
(1,0)
$$

b. y-intercepts).
$t^{2}=0$
$t=0$
a. x-intercep ts).

$$
\begin{align*}
& t^{2}=0 \\
& t=0 \tag{1,0}
\end{align*}
$$

b. y-intercep ts).

$$
\begin{aligned}
& \ln (2)=0 \\
& 2 t=e^{0} \\
& t=\frac{1}{2}
\end{aligned}
$$

7. $f(t)=\left(-(t+2)^{2}+4, t+1\right)$
a. x-intercepts).

$$
\begin{align*}
t+1 & =0 \\
t & =-1 \tag{3,0}
\end{align*}
$$

$-(t+2)^{2}+4=0$	
$(t+2)^{2}=4$	
$t+2= \pm 2$	$(0,-3)$
$(0,1)$	
$t=-4, \quad t=0$	

Find the horizontal and vertical extrema of each parametric function.

8. $x(t)=2 t+1, y(t)=3-2 t$
a. Find the horizontal extrema.

$$
x(t) \text { is linear, so there are no extrema. }
$$

b. Find the vertical extrema.
$y(t)$ is linear, so there are no extrema.
9. $x(t)=t, y(t)=4$
a. Find the horizontal extrema.

$$
x(t) \text { is linear, so there are no extrema. }
$$

b. Find the vertical extrema.

$$
\text { Max and min has a value of } 4
$$

