4.3 Parametric Functions and Rates of Change					
AP Precalculus Na	me:CA #Z				
A particles motion in the <i>xy</i> -plane is modeled by the parametric function $x(t) = t - 1$ and $y(t) = -(t + 2)^2 + 3$. Use this function to answer the problems below.					
 Determine the direction of the particle's motion on the interval 0 ≤ t ≤ 3. 	 Compute the average rate of change of x(t) over the interval 0 ≤ t ≤ 3. 				
 3. Compute the average rate of change of y(t) over the interval 0 ≤ t ≤ 3. 	4. Calculate the slope of the line between the points that correspond to t = 0 and t = 3.				

5. Without the use of technology, determine which set of parametric equations will produce the same path as $f(t) = \left(\frac{3}{4}t^2 + 2t + 1, t + 1\right)$, but will have a direction of particle motion in the opposite direction?

(A)
$$x(t) = -\frac{3}{4}t^2 + 2t + 1$$
, $y(t) = -t + 1$

(B)
$$x(t) = \frac{3}{4}t^2 - 2t + 1$$
, $y(t) = -t + 1$

(C)
$$x(t) = \frac{3}{4}t^2 - 2t + 1$$
, $y(t) = -t - 1$

(D)
$$x(t) = t + 1$$
, $y(t) = \frac{3}{4}t^2 + 2t + 1$

	5. B			4. Slope = -7
. Avg rate of change of $y(t)$ is -7 .	2. Avg rate of change of $x(t)$ is 1.		.2	1. x -values are increasing, y -values are decreasing. The direction is right and down.
Answers to 4.2 CA #2				