A particles motion in the $x y$-plane is modeled by the parametric function $x(t)=t-1$ and $y(t)=$ $-(t+2)^{2}+3$. Use this function to answer the problems below.

1. Determine the direction of the particle's motion on the interval $0 \leq t \leq 3$.
2. Compute the average rate of change of $x(t)$ over the interval $0 \leq t \leq 3$.
3. Calculate the slope of the line between the points that correspond to $t=0$ and $t=3$.
4. Without the use of technology, determine which set of parametric equations will produce the same path as $f(t)=\left(\frac{3}{4} t^{2}+2 t+1, t+1\right)$, but will have a direction of particle motion in the opposite direction?
(A) $x(t)=-\frac{3}{4} t^{2}+2 t+1, y(t)=-t+1$
(B) $x(t)=\frac{3}{4} t^{2}-2 t+1, y(t)=-t+1$
(C) $x(t)=\frac{3}{4} t^{2}-2 t+1, y(t)=-t-1$
(D) $x(t)=t+1, y(t)=\frac{3}{4} t^{2}+2 t+1$

	G 'S	$L-=$ 2dols $\quad \dagger$

