4.3 Parametric Functions and Rates of Change

AP Precalculus

Solutions

4.3 Practice

The table below is a numerical table of values that describe the location of a particle over the interval $0 \le t \le 8$.

t	0	1	2	3	4	5	6	7	8
x	2	* 3 /	† 4 /	5	+ 6 /	† 7	† 8 †	, 9	ત્ર 10
y	30	- 16	- 6 ,	0	2	† 0	† 6	, † 16 ,	+ 30

Use the table to answer questions 1-5.

1. Find the average rate of change of x(t) over the interval 1 < t < 4.

$$\frac{X(4)-X(1)}{4-1}=\frac{6-3}{3}=$$

2. Find the average rate of change of y(t) over the interval $6 \le t \le 8$.

$$\frac{y(8)-y(6)}{8-6}=\frac{30-6}{2}=\frac{24}{2}=12$$

3. Over which interval is the direction of particle motion to the right and upward? Assume the direction does not change between the values *t* shown in the table.

right: 0=t=8

right and up: 45 t ≤8

4. Over which interval is the direction of particle motion to the right and downward? Assume the direction does not change between the values *t* shown in the table.

right: 0≤t≤8 down: 0≤t≤4

right and down: 05t54

5. Find the slope of the graph between the points that correspond to t = 4 and t = 7.

$$\frac{\frac{5(7)-5(4)}{7-4}}{\frac{x(7)-x(4)}{7}} = \frac{\frac{16-2}{3}}{\frac{9-6}{3}} = \frac{\frac{18}{3}}{\frac{3}{3}} = \frac{6}{3}$$

Find a set of parametric equations that will produce the same path as the given set of equations with a direction of particle motion in the opposite direction. Use graphing technology to verify your answer.

6.
$$x(t) = -2(t+2)^2 + 4$$
, $y(t) = 3t - 4$ for $-3 \le t \le 1$.

$$X(-t) = -2(2-t)^{2}+4$$

$$5(-t) = -3t - 4$$

7. $x(t) = \sqrt{4-t}$, y(t) = t+1 for $2 \le t \le 4$.

$$\times (-t) = \sqrt{4+t}$$

$$y(-t) = 1 - t$$

8.
$$x(t) = |t + 5| + 1$$
, $y(t) = 3 - t$ for $-5 \le t \le -1$.

$$x(-t) = |5-t|+1$$

 $y(-t) = 3+t$
for $| \le t \le 5$

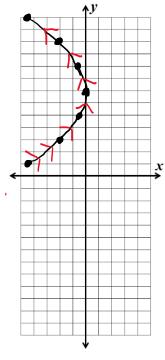
9.
$$x(t) = \frac{t-1}{2}$$
, $y(t) = \frac{2}{3}(t-2)(t+4)(1-t)$ for $-8 \le t \le 2$.

$$x(-t) = \frac{-t-1}{2}$$

 $y(-t) = \frac{2}{3}(-t-2)(4-t)(1+t)$
for $-2 \le t \le 8$

10.
$$x(t) = t + 1$$
, $y(t) = t^2 - 4t + 1$ for $-10 \le t \le -3$.

$$x(-t)=-t+1$$
 for $3 \le t \le 10$
 $y(-t)=t^2+4t+1$


- 11. A particles motion in the plane is modeled by the parametric $x(t) = -\frac{1}{2}(t-2)^2$ and y(t) = 2t+3.
 - a. Fill in the table of values and use it to describe the direction of the particle motion over the interval $-1 \le t \le 5$. Assume the direction does not change between the values t shown in the table.

t	-1	0	1	2	3	4	5
x	- %	-2	- と	0	-3	7	1/2
y	1	3	15	7	9	η	13

On the interval, $-1 \le t \le 2$, the direction is to the right and upward.

On the interval, $2 \le t \le 5$, the direction is to the left and upward.

b. Sketch a graph and indicate the direction of movement along the path.

Find the slope of the graph between the points that correspond to the given values of t.

12.
$$f(t) = (t + 1, 2t + 1)$$
 at $t = 1$ and $t = 5$
 $5(5) = 11$ $(5) = 6$
 $5(1) = 3$ $(1) = 2$

$$\frac{3(5)-3(1)}{5-1} = \frac{11-3}{4} = \frac{2}{1}$$

$$\frac{\times (5)-\times (1)}{5-1} = \frac{G-2}{4} = \frac{1}{1}$$

13.
$$f(t) = (-2|t+4|-3,t)$$
 at $t = -2$ and $t = 4$

$$y(4) = 4 \qquad \times (4) = -2(8) - 3 = -19$$

$$y(-2) = -2 \qquad \times (2) = -2(2) - 3 = -7$$

$$\frac{y(4) - y(-2)}{4 - 2} = \frac{4 - 2}{6} = \frac{1}{-19 - 7} = \frac{1}{-126}$$

$$-\frac{1}{2}$$