The table below is a numerical table of values that describe the location of a particle over the interval $0 \leq \boldsymbol{t} \leq 8$.

Use the table to answer questions 1-5.

1. Find the average rate of change of $x(t)$ over the interval $1 \leq t \leq 4$.

$$
\frac{x(4)-x(1)}{4-1}=\frac{6-3}{3}=1
$$

3. Over which interval is the direction of particle motion to the right and upward? Assume the direction does not change between the values t shown in the table.
4. Find the average rate of change of $y(t)$ over the interval $6 \leq t \leq 8$.

$$
\frac{y(8)-y(6)}{8-6}=\frac{30-6}{2}=\frac{24}{2}=12
$$

$$
\begin{aligned}
& \text { right: } 0 \leq t \leq 8 \\
& \text { up: } 4 \leq t \leq 8
\end{aligned}
$$

4. Over which interval is the direction of particle motion to the right and downward? Assume the direction does not change between the values t shown in the table.
right: $0 \leq t \leq 8$ down: $0 \leq t \leq 4$
right and down: $0 \leq t \leq 4$
5. Find the slope of the graph between the points that correspond to $t=4$ and $t=7$.

$$
\frac{\frac{y(7)-y(4)}{7-4}}{\frac{x(7)-x(4)}{7-4}}=\frac{\frac{16--2}{3}}{\frac{9-6}{3}}=\frac{\frac{18}{3}}{3}=0
$$

Find a set of parametric equations that will produce the same path as the given set of equations with a direction of particle motion in the opposite direction. Use graphing technology to verify your answer.
6. $x(t)=-2(t+2)^{2}+4, \quad y(t)=3 t-4$ for $-3 \leq t \leq 1$.
$x(-t)=-2(2-t)^{2}+4$
$y(-t)=-3 t-4$

$$
\text { for }-1 \leq t \leq 3
$$

7. $x(t)=\sqrt{4-t}, y(t)=t+1$ for $2 \leq t \leq 4$.

$$
\begin{aligned}
& x(-t)=\sqrt{4+t} \\
& y(-t)=1-t
\end{aligned}
$$

$$
\text { for }-4 \leq t \leq-2
$$

8. $x(t)=|t+5|+1, y(t)=3-t$ for $-5 \leq t \leq-1$.

$$
\begin{aligned}
& x(-t)=|5-t|+1 \\
& y(-t)=3+t \\
& \text { for } 1 \leq t \leq 5
\end{aligned}
$$

9. $x(t)=\frac{t-1}{2}, y(t)=\frac{2}{3}(t-2)(t+4)(1-t)$ for $-8 \leq t \leq 2$.

$$
\begin{aligned}
& x(-t)=\frac{-t-1}{2} \\
& y(-t)=\frac{2}{3}(-t-2)(4-t)(1+t)
\end{aligned}
$$

$$
\text { for }-2 \leq t \leq 8
$$

10. $x(t)=t+1, y(t)=t^{2}-4 t+1$ for $-10 \leq t \leq-3$.

$$
\begin{aligned}
& x(-t)=-t+1 \\
& y(-t)=t^{2}+4 t+1
\end{aligned} \quad \text { for } 3 \leq t \leq 10
$$

11. A particles motion in the plane is modeled by the parametric $x(t)=-\frac{1}{2}(t-2)^{2}$ and $y(t)=2 t+3$.
a. Fill in the table of values and use it to describe the direction of the particle motion over the interval $-1 \leq t \leq 5$. Assume the direction does not change between the values t shown in the table.

t	-1	0	1	2	3	4	5
x	$-9 / 2$	-2	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-2	$-9 / 2$
y	1	3	5	7	9	11	13

On the interval, $-1 \leq t \leq 2$, the direction is to the right and upward.
On the interval, $2 \leq t \leq 5$, the direction is to the left and upward.
b. Sketch a graph and indicate the direction of movement along the path.

Find the slope of the graph between the points that correspond to the given values of \boldsymbol{t}.
12. $f(t)=(t+1,2 t+1)$ at $t=1$ and $t=5$

$$
\begin{array}{ll}
y(5)=11 & x(5)=6 \\
y(1)=3 & x(1)=2 \\
\frac{y(5)-y(1)}{5-1} \\
\frac{x(5)-x(1)}{5-1} & \frac{\frac{11-3}{4}}{\frac{6-2}{4}}=\frac{2}{1}
\end{array}
$$

13. $f(t)=(-2|t+4|-3, t)$ at $t=-2$ and $t=4$

$$
\begin{array}{ll}
y(4)=4 & x(4)=-2(8)-3=-19 \\
y(-2)=-2 & x(-2)=-2(2)-3=-7
\end{array}
$$

$$
\frac{\frac{y(4)-y(-2)}{4--2}}{\frac{x(4)-x(-2)}{4--2}}=\frac{\frac{4--2}{6}}{\frac{-19-7}{6}}=\frac{1}{-12 / 6}
$$

