and thoughts here!

Today, we will look at how to parametrically express motion for particles that move around a circle or along a line segment.

Recall from Algebra 1: To find the equation of a line, we need to find the slope and use a point. When the point is the initial point (y-intercept), we can use slope-intercept form: $y=$ \qquad .

Parametrically Defined Lines

First, there are MANY ways you can parameterize the linear path of a particle that is moving from one point to another point. One way to parameterize the linear path of a particle is to use...

- The initial position $\left(x_{1}, y_{1}\right)$.
- The rates of changes for both $x(t)$ and $y(t)$.

How do we find the initial position and rates of change? If we are given two points, do the following:

1. Our starting point will be when $t=0$, which we designate as $\left(x_{1}, y_{1}\right)$.
2. The second point will be when $t=1$, which we designate as $\left(x_{2}, y_{2}\right)$.
3. Find the average rate of change for both x and y.

$$
\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{1-0} \text { and } \frac{\Delta y}{\Delta t}=\frac{y_{2}-y_{1}}{1-0}
$$

4. Our parametric equations can be written as follows: $\boldsymbol{x}(\boldsymbol{t})=$ \qquad and $\boldsymbol{y}(\boldsymbol{t})=$ \qquad

Ex 1: Find a set of parametric equations for the line that passes through the points $(-1,3)$ and $(3,6)$.

Verify our answer is correct by looking at the graph. Using Algebra 1 techniques, we find the slope $m=$ $\frac{6-3}{3+1}=\frac{3}{4}$ and using our point $(-1,3)$ and point-slope form we get $y-3=\frac{3}{4}(x+1)$ or $y=\frac{3}{4} x+\frac{15}{4}$.

Algebra 1 Technique
$y=\frac{3}{4} x+\frac{15}{4}$

Parameterization Technique $x(t)=-1+4 t$ and $y(t)=3+3 t$
 and thoughts here!

Parametrically Defined Circles

Recall from Geometry, Algebra 2, and Trigonometry (Unit 3 from this course).

- Equation of a circle centered at the origin is:
- The equation of a circle with the center at (h, k) is
- $x=r \cos \theta$
- $y=r \sin \theta$

Remember, parametric equations are used to describe the direction of particle motion, where $x(t)$ is the horizontal movement and $y(t)$ is the vertical movement. Using this knowledge, we can parameterize the equation of a circle as

Circle of radius $r=1$, centered at the origin: $f(t)=$ \qquad .

Note: This will always yield counterclockwise direction, swapping $\cos t$ and $\sin t$ would result in clockwise rotation, but that is not in this section.

Parametric Equation of a Circle

The parametric equations of a circle centered at (h, k) can be written as

$$
x(t)=\quad \text { and } y(t)=
$$

where r is the radius of the circle.

Ex 2: Use the equation of the circle $(x-2)^{2}+(y+4)^{2}=4$ to answer the questions below.
a. Find the parametric equations for the circle.
b. Graph the circle and indicate the direction of particle motion for $0 \leq t \leq 2 \pi$.

4.4 Parametrically Defined Circles and Lines

AP Precalculus

1. Find the parametric equations for the linear path of a particle that travels from the point $(0,3)$ to the point $(-1,5)$.
2. If a particle traveling on a linear path has a starting point of $(3,6)$ and a slope of $\frac{1}{3}$, find the parametric equations that represent the linear path.
3. If the parametric equations for the linear path a particle travels are given by $(-1+7 t, 5+4 t)$, what is the slope of the path of the particle?
4. If the average rate of change of x is -2 and of y is 1 , what are the parametric equations of a particle traveling on a linear path that starts at the origin?
5. Which of the following give the parametric equations for a particle traveling on a linear path that passes through the point $(1,3)$ and then the point $(-2,8)$?
i. $\quad x(t)=1-3 t$ and $y(t)=3+5 t$
ii. $\quad x(t)=1+3 t$ and $y(t)=3-5 t$
iii. $x(t)=-2-3 t$ and $y(t)=8+5 t$
iv. $x(t)=-2+3 t$ and $y(t)=8-5 t$
(A) i only
(B) i and $i i i$
(C) iii only
(D) i and $i v$
6. Find the parametric equations for the circle with the center at $(-2,-1)$ and a radius of 6 .
7. If a particle is traveling on a circular path and its distance from the origin at any moment of time is $\sqrt{2}$ units, find the parametric equations for this situation.
8. Find the parametric equations for a particle traveling on the path modeled by $(x+2)^{2}+(y-6)^{2}=5$.
9. If a unit circle centered at the origin has a transformation of 3 units to the left and 5 units down, find the parameterization of the circle in the new location.
10. If the parametric equations $x(t)=1+5 \cos t$ and $y(t)=2+5 \sin t$ are used to describe the path a particle is traveling, find the rectangular form equation of the graph it creates.
