4.4 Parametrically Defined Circles and Lines

AP Precalculus

1. Find the parametric equations for the linear path of a particle that travels from the point $(0,3)$ to the point $(-1,5)$.

$$
\begin{array}{ll}
(0,3) \text { when } t=0 & \frac{\Delta x}{\Delta t}=\frac{-1}{1}=-1 \\
(-1,5) \text { when } t=1 & \frac{\Delta y}{\Delta t}=\frac{5-3}{1}=2
\end{array}
$$

$$
\begin{aligned}
& x(t)=-t \\
& y(t)=3+2 t
\end{aligned}
$$

2. If a particle traveling on a linear path has a starting point of $(3,6)$ and a slope of $\frac{1}{3}$, find the parametric equations that represent the linear path.

$$
\begin{aligned}
\text { Slope }=\frac{1}{3} \rightarrow \frac{\Delta y}{\Delta t} & =1 \\
\frac{\Delta x}{\Delta t} & =3 \\
& x(t)=3+3 t \\
y(t) & =6+t
\end{aligned}
$$

4. If the average rate of change of x is -2 and of y is 1 , what are the parametric equations of a particle traveling on a linear path that starts at the origin?

$$
\begin{array}{ll}
\frac{\Delta y}{\Delta t}=4 \\
\Delta x-7 & \text { slope }=\frac{4}{7}
\end{array}
$$

$$
\frac{\Delta x}{\Delta t}=7
$$

$$
\begin{aligned}
& x(t)=-2 t \\
& y(t)=t
\end{aligned}
$$

5. Which of the following give the parametric equations for a particle traveling on a linear path that passes through the point $(1,3)$ and then the point $(-2,8)$?

$$
\begin{aligned}
& \sqrt{ } \text { (i.) } x(t)=1-3 t \text { and } y(t)=3+5 t \\
& \text { ii. } x(t)=1+3 t \text { and } y(t)=3-5 t \\
& \checkmark \text { (iii. } x(t)=-2-3 t \text { and } y(t)=8+5 t \\
& \text { iv. } x(t)=-2+3 t \text { and } y(t)=8-5 t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta x}{\Delta t}=\frac{-2-1}{1}=-3 \\
& \frac{\Delta y}{\Delta x}=\frac{8-3}{1}=5
\end{aligned}
$$

$$
x(t)=1-3 t
$$

$$
y(t)=3+5 t
$$

$$
\text { use }(-2,8) \text { as well }
$$

$$
x(t)=-2-3 t
$$

(A) i only
(C) iii only
(B) i and $i i t$

$$
y(t)=8+5 t
$$

6. Find the parametric equations for the circle with the center at $(-2,-1)$ and a radius of 6 .

$$
\begin{aligned}
& x(t)=6 \cos t-2 \\
& y(t)=6 \sin t-1
\end{aligned}
$$

7. If a particle is traveling on a circular path and its distance from the origin at any moment of time is $\sqrt{2}$ units, find the parametric equations for this situation.

$$
\begin{gathered}
\text { Center at }(0,0) \\
r=\sqrt{2} \\
x(t)=\sqrt{2} \cos t \\
y(t)=\sqrt{2} \sin t
\end{gathered}
$$

8. Find the parametric equations for a particle traveling on the path modeled by $(x+2)^{2}+(y-6)^{2}=5$.

$$
\text { Center at }(-2,6)
$$

$$
r=\sqrt{5}
$$

$$
x(t)=\sqrt{5} \cos t-2
$$

$$
y(t)=\sqrt{5} \sin t+6
$$

9. If a unit circle centered at the origin has a transformation of 3 units to the left and 5 units down, find the parametrization of the circle in the new location.

$$
\begin{aligned}
& \text { Center at }(-3,-5) \\
& r=1 \\
& x(t)=\cos t-3 \\
& y(t)=\sin t-5
\end{aligned}
$$

10. If the parametric equations $x(t)=1+5 \cos t$ and $y(t)=2+5 \sin t$ are used to describe the path a particle is traveling, find the rectangular form equation of the graph it creates.

$$
\begin{aligned}
& \text { Center at }(1,2) \\
& r=5 \\
& (x-1)^{2}+(y-2)^{2}=25
\end{aligned}
$$

