For each sequence, state if it is arithmetic, geometric, or neither.If it is arithmetic, tell the common difference. If it is geometric, tell the common ratio. If it is neither, chill out and move on to the next problem.

1) $-1,6,-36,216,-1296, \ldots$
2) $11,-9,-29,-49,-69, \ldots$
Geometric, Common Ratio $=-6$
Arithmetic, Common Difference $=-20$
3) $2, \frac{5}{2}, 3, \frac{7}{2}, 4, \ldots$

Arithmetic, Common Difference $=0.5$ (or 1/2)
4) $-6,24,-126,624,-3126, \ldots$

Neither

5) $32,36,40,44,48, \ldots$

Arithmetic, Common Difference $=4$
7) $a_{n}=-\frac{19}{24}+\frac{5}{3} n$
6) $0.4,2,10,50,250, \ldots$

Geometric, Common Ratio $=5$
8) $a_{n}=8+6 n$

Arithmetic, Common Difference $=(5 / 3)$
9) $a_{n}=3 \cdot(-6)^{n-1}$
10) $a_{n}=\frac{2 n}{2 n+1}$

Geometric, Common Ratio $=-6$
Neither

Determine if the sequence is arithmetic. If it is, find the common difference, the term named in the problem, and the explicit formula.
11) $10,16,22,28, \ldots$
Find a

Find a_{25}
Arithmetic, Common Difference $=6$
$a_{a}=10+6(n-1)$
$a_{25}=10+6(24)$
$a_{25}=154$
12) $-31,-33,-35,-37, \ldots$
Find a_{35}

Arithmetic, Common Difference $=-2$

$$
\begin{aligned}
& a_{n}=-31+(-2)(n-1) \\
& a_{35}=-31+(-2)(34) \\
& a_{35}=-99
\end{aligned}
$$

13) $1,2,6,24, \ldots$ Find a_{20}

Not Arithmetic

Determine if the sequence is geometric. If it is, find the common ratio, the term named in the problem, and the explicit formula.
14) $1,4,16,64, \ldots$

Find a_{9}
Geometric, Common Ratio $=4$
$a_{n}=(1)(4)^{n-1}$ OR $4^{(n-1)}$
$a_{a}=65536$
15) $-7,-5,-2,2, \ldots$

Find a_{10}
Not Geometric

$$
\text { Geometric, Common Ratio }=-2
$$

$$
\begin{aligned}
& a_{n}=(1)(-2)^{n-1} \\
& a_{10}=-512
\end{aligned}
$$

$$
s_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}<\sin
$$

$$
\xrightarrow{S \cup M} S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

For numbers $16-20$, find the sum of the first \boldsymbol{n} terms indicated in part (a). Then, for part (b), find \boldsymbol{n} for the given sum S_{n}.
$r=4$
17. $1+4+16+64+\ldots . \Rightarrow$ GEOMETRy
a. $n=14$
b. $\quad S_{n}=341$
a. $S_{n}=\left(\frac{1-4^{n}}{1-4}\right)=89,478,495$
b.

$$
\begin{array}{rlrl}
341 & =1\left(\frac{1-r^{n}}{1-r}\right) & \log \operatorname{loz2} & =-n \log 4 \\
341 & =\frac{1-4^{n}}{-3} & \frac{\log 1022}{\log 4} & =-n \\
1023 & =1-4^{n} & 5 & =n
\end{array}
$$

20.

$$
7024--4^{n}
$$

$$
2+16+30+44+58+\ldots
$$

$$
\Longrightarrow A R_{1} \text { THE }_{24} \mathrm{~T}_{21}
$$

a. $\quad n=24 \quad S_{24}=\frac{24(2+(22 m(20))}{2}=3912$
b. $\quad S_{n}=2178$

$$
\begin{aligned}
2178 & =\frac{n(2+2+14(n-1))}{2} \\
4356 & =14 n^{2}-10 n \\
0 & =14 n^{2}-10 n-4356 \\
0 & =2\left(7 n^{2}-5 n-2178\right)
\end{aligned}
$$

Evaluate each series. Quad Form $n=18$ (exclude) decimal ans)
18. $50+42+34+26+\ldots$
a. $\quad n=40$
b. $\quad S_{n}=182$

$$
a_{n}=50+(-8)(-39)=-262
$$

$$
\begin{aligned}
& S_{40}=\frac{40(50+(-262))}{2}=-4240 \\
& 182=\frac{n(50+(50-8(n-1))}{2} \\
& 364=n(50+50-8 n+8) \\
& \left.n=-\begin{array}{l}
364=-8 n^{2}+108 n \\
0=-8 n^{2}+108 n-364 \\
0 \\
0=(2 n-27 n+91 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\text { 21. } 1+9+81+729+\ldots .
$$

GEombiac
a. $n=10$
b. $\quad S_{n}=820$
a. $S_{10}=1\left(\frac{1-9^{10}}{1-10}\right)=435,848,050$
b

$$
\begin{aligned}
& 820=\left\lvert\,\left(\frac{1--^{n}}{1-9}\right)\right. \\
& -6560=\mid-9^{n} \\
& -656 \mid=-9^{n} \\
& 6561=9^{n} \\
& \sum_{j}{ }^{j} \quad n=\log 6561=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 23. } \quad \sum_{i=2}^{7} i+2 \\
& \begin{array}{l}
(2+2)+(3+2)+(4+2)+(5+2)+(6+2)+(7+2) \\
=2(2+3+4+5+6+7) \\
=
\end{array} \quad 39
\end{aligned}
$$

Write each series in sigma notation.
26. $16+25+36+49+64$
27. $2+4+8+16+32$
28. $501+502+503+504$

19. $7+(-21)+63+(-189)+\ldots$
\Rightarrow GEOMETRIC
a. $n=18$

$$
\begin{aligned}
& \text { b. } 18, S_{n}=3829 \\
& \begin{array}{c}
\text { b. } \\
S_{18}=7\left(\frac{1-(-3)^{18}}{1-(-3)}\right)
\end{array} \begin{array}{l}
S_{n}=3829 \\
=-677,985,054
\end{array} \\
& 3829=\frac{7\left(1-(-3)^{n}\right)}{(\log 21877}=n \log (-(-3)
\end{aligned}
$$

$$
\begin{aligned}
& 7=n \\
& 2188=1-(-3)^{n}
\end{aligned}
$$

$n \times \frac{13}{2} \cdot r 7$
22. $3+8+13+18+23+\ldots$
\Rightarrow ArithmeTic
a. $n=20$
b. $\quad S_{n}=366$

