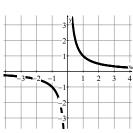
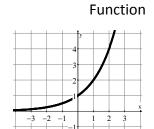

Write your questions and thoughts here!

2.2 Domain & Range (Graphs) Name:_

12 Basic Functions:

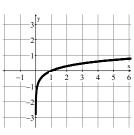
$$f(x) =$$

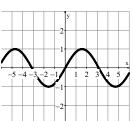

$$f(x) =$$

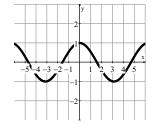

Function

Function

$$f(x) =$$

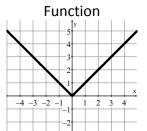


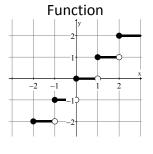

$$f(x) =$$

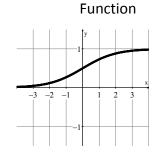

$$f(x) =$$

$$f(x) =$$

Function



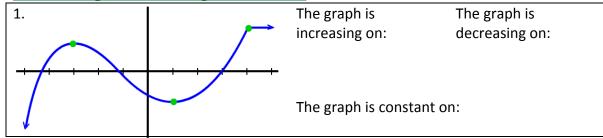


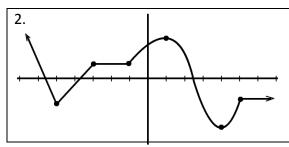

$$f(x) =$$

$$f(x) =$$

$$f(x) =$$

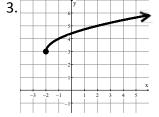
$$f(x) =$$




2.2 Domain & Range (Graphs)

Write your questions and thoughts here!

Increasing/Decreasing Functions:



The graph is increasing on:

The graph is decreasing on:

The graph is constant on:

Domain and Range of a Graph:

Domain:


Interval:

Range: Interva

Interval: _____

Inequality: _____

Inequality: _____

Domain:

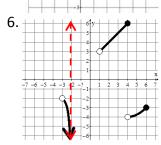
Interval:

Range:

Interval:

Inequality: _____

Inequality: _____


Domain:

____ Interval: Range:

Interval:

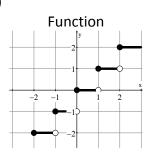
Inequality: _____

Inequality: _____

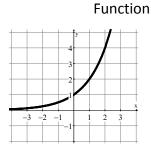
Domain:

Interval:

Range:

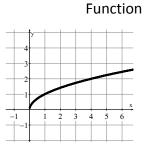

Interval: _____

Inequality: _____ Inequality: _____

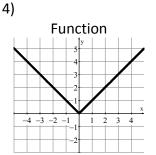

Now summarize what you learned!

For 1-12, name the basic function shown and write the equation. Try not to look back at your notes if possible.

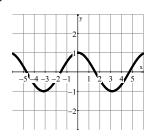
1)



2)

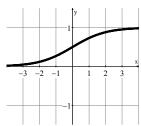


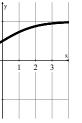
f(x) =


f(x) =

f(x) =

5)

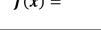



f(x) =

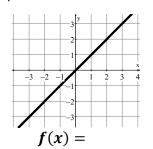
f(x) =

6)

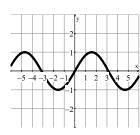




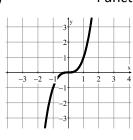
f(x) =

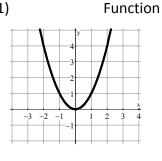


f(x) =



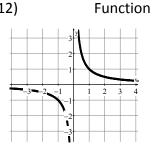
Function


9)

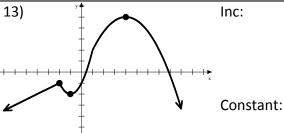

f(x) =

10)

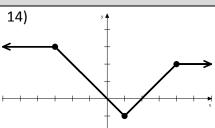
f(x) =


Function 11)

f(x) =

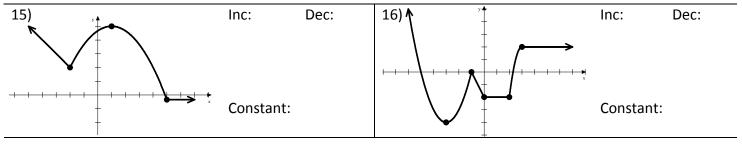

12)

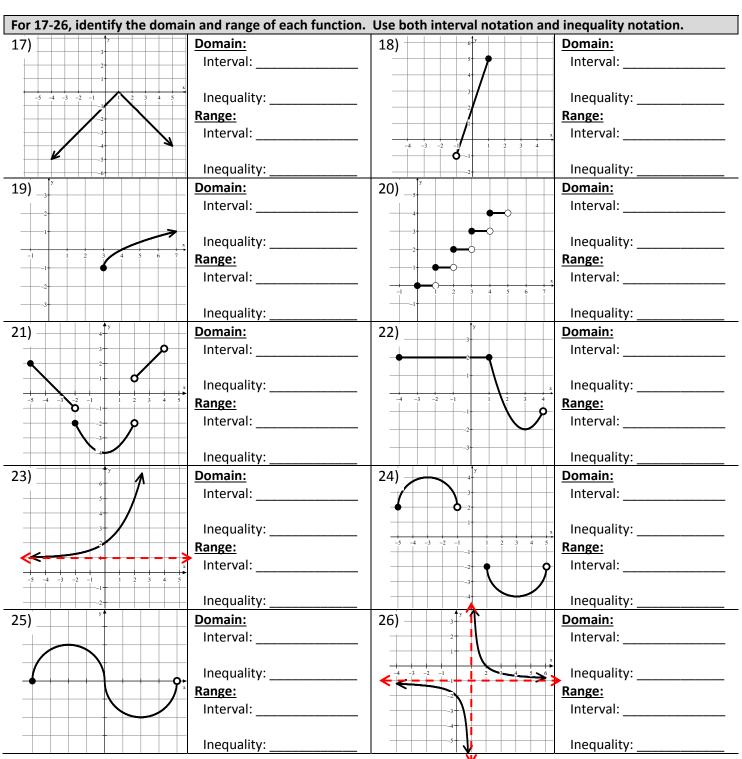
8)


f(x) =

For 13-16, identify the domain intervals where each function is increasing, decreasing, and constant. Use interval notation.

Inc:


Dec:



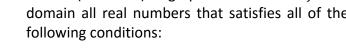
Inc:

Dec:

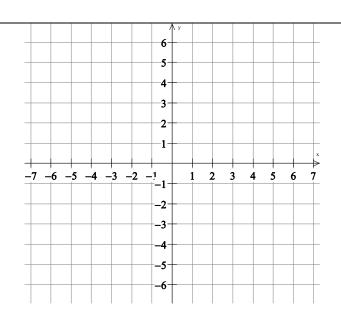
Constant:

2.2 Application and Extension

Relevant domain for a model is a domain that fits the situation. For each of the following models (27-30) give the relevant domain using inequality notation and explain your reasoning in a full sentence. Some problems will have more than one correct answer, so do your best to explain.

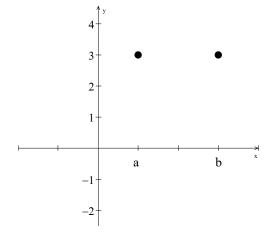

- 27. The volume of a sphere depends on its radius 28. A person's height (feet) depends on their age and is modeled by $V(r) = \frac{4}{3}\pi r^3$.
 - (years) and is modeled by $H(a) = \frac{1}{4}a + 1$

- 29. The distance you travel while hiking is a function of how long you hike at 3 miles per hour. This is modeled by d(t) = 3t where t is measured in hours.
- 30. To change Celsius to Fahrenheit, use the formula $F(C) = \frac{9}{5}C + 32$. You are concerned only with temperatures from freezing to boiling.

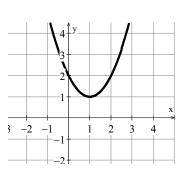

- 31. Which function is only decreasing?
- (A) Outdoor temperature as a function of time.
- (B) The Dow Jones Industrial Average as a function of time.
- (C) Air pressure in the Earth's atmosphere as a function of altitude.
- (D) World population since 1900 as a function of
- (E) Water pressure in the ocean as a function of depth.

32. If a graph's average slope between two points is positive, then is the graph increasing or decreasing?

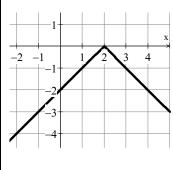
33. Sketch (freehand) a graph of a function f with domain all real numbers that satisfies all of the



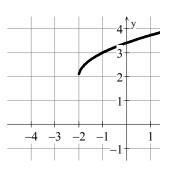
- a. There are no breaks in the graph (it is continuous).
- b. f(0) = 2
- c. f(3) = 0
- d. f(5) = f(0)
- e. f is increasing on $(-\infty, 0)$ and on (3, 5)
- f. f is decreasing on (0,3) and on $(5,\infty)$

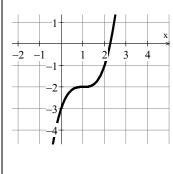

- 34. Mr. Brust's flip-flops are thrown into the air by a catapult. Their height (measured in feet) is modeled by the equation $h(t) = -16t^2 + 85t$, where t is seconds.
 - I. What is the relevant domain of this model (use a graphing calculator)? What does it represent?
 - II. What is the relevant range of this model (Use a graphing calculator)? What does it represent?
- 35. Let f be a polynomial function with degree greater than 2 (cubic, quartic, etc). If $a \neq b$ and f(a) = f(b) = 3, which of the following must be true for at least one value of x between a and b. (One, both, or neither could be true.) Explain your reasoning in full sentences.
 - I. f(x) = 0 at least once.
 - II. f(x) has at least one maximum or minimum.

Hint: Use the graph to help you draw a picture that proves or disproves each statement.



Skillz Review: Write the function of each graph using $f(x) = \sqrt{x}$, $f(x) = x^3$, f(x) = |x|, or $f(x) = x^2$.


1)
$$f(x) =$$


2)
$$f(x) =$$

3)
$$f(x) =$$

4)
$$f(x) =$$

