Horizontal Asymptotes vs. Vertical Asymptotes

Horizontal Asymptote

1.

Vertical Asymptote

1.

2.

2.

3.

3.

<u>Limits Involving Infinity – H.A.</u>

Horizontal Asymptotes

$$\lim_{x \to -\infty} f(x) =$$

"The _____ side of the graph has a _____ that approaches..."

$$\lim_{x\to\infty}f(x)=$$

"The _____ side of the graph has a _____ that approaches..."

Finding the Horizontal Asymptote(s) Using a Graphing Calculator

$$1. f(x) = \frac{3x - 4}{x + 1}$$

1.
$$f(x) = \frac{3x-4}{x+1}$$
 2. $f(x) = \frac{2x^2+3x-805}{3x^2-75x+1007}$ 3. $f(x) = \frac{9}{1+e^{-x}} - 4$

$$3. f(x) = \frac{9}{1 + e^{-x}} - 4$$

<u>Limits Involving Infinity – V.A.</u>

Vertical Asymptotes

$$\lim_{x \to c^{-}} f(x) =$$

"As x approaches c _____"
the graph goes _____"

"As x approaches c ______ the graph goes _____

Finding the behavior of a function around the vertical asymptote.

$$4. f(x) = \frac{7x - 50}{7x^2 - 29x - 150}$$

x	-4	-3.5	-3.1	-3.01	-3.001	-3	-2.999	-2.9	-2.5	-2	-1
f(x)											

$$5. f(x) = \frac{135x^3 + 408x^2 + 128x}{45x^2 - 434x - 160}$$

x		10		
f(x)				

Skillz Review: Write the function of each graph using $f(x) = \sqrt{x}$, $f(x) = x^3$, f(x) = |x|, or $f(x) = x^2$.

2)
$$f(x) =$$

3)
$$f(x) =$$

4)
$$f(x) =$$

2.4 Practice - Limits to Infinity

Pre-Calculus

For 1-2, use limit notation to represent the horizontal and vertical asymptotes. Then sketch them on the graph.

Horizontal Asymptote:

Vertical Asymptote:

Horizontal Asymptote:

Vertical Asymptote:

For 3-8, use a graphing calculator to find the horizontal asymptotes. Use limit notation to represent both the left and the right side end behavior.

$$3. f(x) = \frac{2x-4}{x-8}$$

$$4. f(x) = \frac{2.6}{1 + e^{-x}} - 2$$

$$5. f(x) = \frac{10x - 13x^3}{39x^3 + 89x^2 + x}$$

$$6. f(x) = \frac{5 + x^2}{12 - 3x^2 + 9x}$$

$$7. f(x) = \frac{6}{1 + e^{-x}} + 2$$

$$8. f(x) = \frac{3.5}{1 + e^{-x}} + 1$$

For 9-11, fill in the table and use that information to identify the vertical asymptote. Use limit notation to represent the behavior of the graph at the *vertical asymptote*.

9.
$$f(x) = \frac{5x^2 - 4x - 1}{10x^2 - 38x - 8}$$

x	3	3.9	3.999	4	4.001	4.1	5
f(x)							

10.
$$f(x) = \frac{3x^2 - 20x - 7}{9x^2 + 21x + 6}$$

x		-2		
f(x)				

Choose your own domain values!

$$11. f(x) = \frac{x}{1-x}$$

x		1		
f(x)				

2.4 Application and Extension

- 1. Mr. Sullivan decides to start raising bunnies. On the right is the population of these bunny rabbits over a 2-year period.
 - a. Graph the scatterplot with a "friendly" window and record it here.
 - b. Find a *logistic* regression model for the data. (Be patient, it will take the calculator a little extra time to calculate this.) Write out the logistic model below. Round all values to the nearest thousandth (three decimal places).

TI-84 Plus Silver Edition TEXAS INSTRUMENTS
WINDOW Xmin= Xmax= Xscl= Ymin= Ymax= Yscl= Xres=1
STAT PLOT F1 TBLEET F2 FORMAT F3 CALC P4 TABLE F5 Y2 WHIDOW TOOM TRACE GRAPH

Bunny P	opulation
Beginning of	Number
Month	(in hundreds)
0	10
2	12
4	14
6	16
8	22
10	30
12	35
14	39
16	44
18	48
20	50
22	51

- c. Find the limit of that model as time approaches infinity. Write it below using limit notation.
- d. How does your answer from part c relate to the problem?
- e. Provide a reasonable explanation why a population would have a growth limit instead of growing indefinitely like an exponential model.

For 2 – 3, sketch a graph of a function y = f(x) that satisfies the stated conditions.

2. Sketch (freehand) a graph of a function f that satisfies all of the following conditions. Include any asymptotes.

b.
$$\lim_{x \to \infty} f(x) = \infty$$

c.
$$\lim_{x \to -\infty} f(x) = 2$$

- -5 -4 -3 -2 -1-5 -4 -3 -2 -1
- 3. Sketch (freehand) a graph of a function f that satisfies all of the following conditions. Include any asymptotes.

b.
$$\lim_{x \to -3^+} f(x) = \infty$$

b.
$$\lim_{x \to -3^{+}} f(x) = \infty$$
c.
$$\lim_{x \to -3^{-}} f(x) = -\infty$$
d.
$$\lim_{x \to \infty} f(x) = -1$$

d.
$$\lim_{x \to \infty} f(x) = -1$$