8)

Tell whether the equation or graph represents an exponential growth or exponential decay function.

1)
$$y = 5(0.4)^x$$

2)
$$y = -3\left(\frac{7}{2}\right)^x$$

4)
$$y = 9(1.5)^x$$

6)
$$y = 0.2(0.3)^{-x}$$

7)
$$v = -3(6)^x$$

$$3(6)^{x}$$

Sketch the graph of each exponential function by doing the following: Sketch the asymptote, label at least three distinct coordinate points on each graph, and write the domain and range of each function.

9.
$$y = 4\left(\frac{1}{2}\right)^{x}$$

10.
$$y = -3\left(\frac{1}{3}\right)^x$$

11. $y = -2\left(\frac{1}{5}\right)^{x+2} + 3$

Domain:

Range:

Domain:

Range:

Domain:

Range:

Give the **percent** *increase* or **percent** *decrease* for each equation.

12)
$$y = 5(3.1)^x$$

13)
$$y = 0.25(1.029)^x$$

14)
$$y = 1.9(0.893)^x$$
 15) $y = 36(6.2)^x$

15)
$$y = 36(6.2)^x$$

Solve each equation for the unknown variable.

16.
$$64^{3x} = 4$$

$$64^{1-n} = 16^{-n}$$

18.
$$16^{n+2} = \left(\frac{1}{4}\right)^{3n}$$

19.
$$\left(\frac{1}{25}\right)^{3b} \cdot 625^{3b} = 1$$

For 16 – 19, write a model for each scenario and use the model to calculate the balance for the given number of years. (Not all problems involve continuous compounding...some are periodic!)

- 20. You deposit \$500 in an account that pays 8% annual interest compounded monthly. How much will you have after 15 years?
- 21. You deposit \$575 in an account that pays 4% annual interest compounded continuously. How much will you have after 5 years?

Answer Key to 7.1 CA – Exponential Functions

- 1) Decay
- 2) Growth
- 3) Decay
- 4) Growth

- 5) Decay
- 6) Growth
- 7) Growth
- 8) Growth

10. $y = -3\left(\frac{1}{3}\right)^x$

11. $y = -2\left(\frac{1}{5}\right)^{x+2} + 3$

Domain:

Range:

All real numbers

Domain:

Range: All real numbers. y < 0

Domain: Range:

All real numbers.

- 12) 210% increase
- 13) 2.9% increase
- 14) 10.7% decrease
- 15) 520% increase

- 16) $x = \frac{1}{9}$
- 17) n = 3
- 18) n = $-\frac{4}{5}$
- 19) b = 0

20)
$$A(t) = 500 \left(1 + \frac{.08}{12}\right)^{12t}$$

 $A(15) = \$1,653.46$

21)
$$A(t) = 575e^{0.04t}$$

 $A(5) = 702.31