

Angle Terminology

Angle

Draw some angles!

Name some angles!

Coterminal Angles -

Degrees, Minutes, Seconds

Babylonian Numbers

```
₩7 21 ₩7 31
     ₹ 11
                          W 9 41
                                  CK 7 51
YY 2
     (77 12
            ₩77 22 ₩77 32
                          10 17 42
                                  ₹ 77 52
111 3
     (777 13
            HTT 23 HTT 33
                          1777 43
                                  117 53
₩ 5
     () 15
            ₩ 25
                          使算 45
                                  松算 55
           代際 26 代際 36
                          世際 46
₩ 7
     € 17
           ₩ 27
                          ₩ 47
           ₩ 28
     ₹ 18
                          ₩ 48
                                  ₹# 58
                 州 39 世 49
                                 松# 59
€ 10
      4 20
           ₩ 30
                  40
```

DMS to Decimal Degrees

Decimal Degrees to DMS

SUMMARY:

Draw an angle with the given measure in standard position.

2. -115°

3. -290°

4. 440°

Find the measure of each angle.

6

7.

8.

State the quadrant in which the terminal side of each angle lies.

Find one positive and one negative coterminal angle the angle given.

Find a coterminal angle between 0° and 360° .

Find ALL coterminal angles.			
17.	18. −200°		19. 90°
85° x	10. 200		
Convert to decimal degree.			
20. 43°20′		21. 125°25′30″	
22. 61°52′17″		2328°5′42″	
Convert to degrees, minutes, and second 24. 42.35°	onds.		
24. 42.35°		25. 142.125°	
2660.4°		27. 218.68°	

D.4	TC '4 ' C 1
Determine if the statement is true or false.	IT IT IS TAISE GIVE A COUNTEREXAMNIE
Determine if the statement is true of faise.	if it is faise, give a counter example.

- 28. If the terminal side of an angle in standard position lies in quadrant I, then the angle is positive.
- 29. If the initial and terminal sides of an angle coincide, then the measure of the angle is zero.

Skillz Review Simplify the following.				
$1.\frac{\frac{1}{2}}{\frac{3}{4}}$	2. $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{4}}$	$3. \ \frac{3}{\left(\frac{\sqrt{3}}{4}\right)}$	$4. \ \frac{\left(\frac{\sqrt{3}}{4}\right)}{\sqrt{2}}$	

8.1 Angles and Degrees

APPLICATION

1. Draw an angle with the given measure.

2. Name ALL coterminal angles.

- 3. One complete revolution or one complete rotation is 360°. Given the initial side of angle is in standard position, determine which axes or quadrant the terminal side of the angle would fall if...
- a. 1.5 revolutions clockwise
- b. $\frac{3}{4}$ rotation counterclockwise
- c. $\frac{7}{5}$ rotations clockwise

4.	Mr. Bean loves the half pipe and wants to try a Ollie Fakey-to-Air Double McTwist 1280.
	a. How many revolutions will he make to complete the 1280?
	b. If Bean leaves the half pipe at the exact same spot, is a Poptart 540 coterminal to a Lando-Roll 1440? Justify.
5.	Mr. Brust rides his unicycle over a line of fresh paint. He continues to ride in a straight line leaving marks that are 6.5 feet apart. What is the radius of Mr. Brust's unicycle tire?
6.	Farmer Kelly drives his tractor in a straight line. The back tire has a diameter of 4.5 feet and the front tire has a radius of 1.2 feet.
	a. If the back tire makes 16 revolutions, how many revolutions does the front tire make?
	b. If the back tire makes ³ / ₄ of a revolution, how many revolutions does the front tire make?

c. The back tire makes 80 revolutions per minute (rpm), how fast is the front tire?