Date:_____ Period: _____

ID: 2

Unit 3 Corrective Assignment – Function Analysis

Pre-Calculus

Find the *domain* of the indicated function. Write your answers using inequality notation. *Classify* all discontinuities.

 $h(t) = \frac{\sqrt{t+49}}{t-7}$

 $f(x) = \frac{8 + x}{64 + x^2}$

 $g(w) = \frac{w^2 - 3w}{2w^3 + w^2 - 21w}$

Domain:

Absolute max/min value(s):

Local extrema that are NOT absolute:

Increasing:

Decreasing:

Left End-behavior:

$$\lim_{x \to -\infty} f(x) =$$

Right End-behavior:

$$\lim_{x \to \infty} f(x) =$$

Domain:

Absolute max/min value(s):

Local extrema that are NOT absolute:

Increasing:

Decreasing:

Left End-behavior:

$$\lim_{x \to -\infty} f(x) =$$

Right End-behavior:

$$\lim_{x\to\infty}f(x)=$$

4.

5. $f(x) = \frac{x^2 - 9}{|x - 3|}$

Find the value of the given function at the indicated domain value.

$$g(x) = \begin{cases} x^2 + 7x - 5, & x < -5\\ 5 - x^3, & -3 \le x < 5\\ -\sqrt{x - 9}, & x \ge 5 \end{cases}$$

$$h(x) = \begin{cases} -x^2 - 4x + 6, & x < -2\\ \frac{2}{3}x - 5, & -2 < x < 5\\ |x - 15| - 2, & x \ge 5 \end{cases}$$
8. $h(10) =$
9. $h(-2) =$

6.
$$g(-4) =$$

7.
$$g(5) =$$

8.
$$h(10) =$$

9.
$$h(-2) =$$

10.
$$h(5) =$$

11.
$$h(3) =$$

12.
$$g(9) =$$

13.
$$h(-3) =$$

Graph the following piecewise functions.

14.
$$f(x) =$$

$$\begin{cases}
-\frac{1}{3}x - 2, & x < -3 \\
2, & -3 \le x \le 2 \\
x - 5, & x > 2
\end{cases}$$
15. $g(x) =$

$$\begin{cases}
-3, & -4 \le x < -3 \\
1, & -3 < x \le 0 \\
-|x - 2|, & x > 0
\end{cases}$$

15.
$$g(x) =$$

$$\begin{cases}
-3, & -4 \le x < -3 \\
1, & -3 < x \le 0 \\
-|x-2|, & x > 0
\end{cases}$$

Skillz Review: Solve or evaluate.

17.
$$\sqrt{-245}$$

18.
$$7x^2 + 8 = 358$$

19.
$$-3(x+2)^2 - 1 = -49$$
 | 20. $2(x+6)^2 = -68$

20.
$$2(x+6)^2 = -68$$

21.

$$f(x) =$$

23. Is this function continuous? (SHOW WORK!)

$$f(x) = \begin{cases} 20 - 3x, & x < 8 \\ -\sqrt{x - 4}, & x \ge 8 \end{cases}$$

22.

$$f(x) =$$

24. What value(s) of *k* would make the function continuous?

$$h(x) = \begin{cases} \sqrt{13 - x}, & x \le -87 \\ k^2 - 3k, & x > -87 \end{cases}$$

- 25. Mr. Kelly wants to create a rectangular feeding pen for his chickens, but only has 70 meters of fencing. He decides to use the side of his house as one side of the pen.
 - a. If *x* represents the width of the pen, express its area *A* in terms of *x*. (The side of Kelly's house is the length.)
 - b. What is the domain of the function *A* (determined by the physical restrictions)?

26. Rewrite the function $f(x) = \frac{1}{3}|x - 15| - 8$ as a piecewise function.

- 27. A rectangle has its base on the x-axis and its two upper corners on the parabola $y = 4 x^2$.
 - a. Draw this scenario on the coordinate plane to the right, and draw one possible rectangle.
 - b. Label the base and height of your rectangle in terms of x.
 - c. Find the function A(x) that represents the area of the rectangle.

- d. What is the largest possible area of this rectangle?
- e. At what x-value should the rectangle be drawn for the largest area?
- 28. Kelly is headed off to Hickville, New York and is renting a car to get there from Sully's house in O-high-O. He needs to rent a car to get there and finds one car rental agency that charges \$0.21 per mile if the total mileage does not exceed 75. If the total mileage exceeds 75, the agency charges \$0.21 per mile for the first 75 miles and only \$0.16 per mile for each mile over 75. If m represents the number of miles a rented vehicle is driven, express the mileage charge $\mathcal{C}(m)$ as a function of m. Find $\mathcal{C}(24)$ and $\mathcal{C}(205)$.

$$C(24) =$$

$$C(205) =$$